Thomas A. Morrison
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas A. Morrison.
Journal of Applied Ecology | 2013
Hall Sawyer; Matthew J. Kauffman; Arthur D. Middleton; Thomas A. Morrison; Ryan M. Nielson; Teal B. Wyckoff
Summary 1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement, semi-permeable barriers allow animals to maintain connectivity between their seasonal ranges. Our results identify the mechanisms (e.g. detouring, increased movement rates, reduced stopover use) by which semi-permeable barriers affect the functionality of ungulate migration routes and emphasize that the management of semi-permeable barriers may play a key role in the conservation of migratory ungulate populations.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Arthur D. Middleton; Thomas A. Morrison; Jennifer K. Fortin; Charles T. Robbins; Kelly M. Proffitt; P.J. White; Douglas E. McWhirter; Todd M. Koel; Douglas G. Brimeyer; W. Sue Fairbanks; Matthew J. Kauffman
The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.
PLOS ONE | 2013
Nathan F. Bendik; Thomas A. Morrison; Andrew Gluesenkamp; Mark S. Sanders; Lisa J. O’Donnell
Despite recognition that nearly one-third of the 6300 amphibian species are threatened with extinction, our understanding of the general ecology and population status of many amphibians is relatively poor. A widely-used method for monitoring amphibians involves injecting captured individuals with unique combinations of colored visible implant elastomer (VIE). We compared VIE identification to a less-invasive method – computer-assisted photographic identification (photoID) – in endangered Jollyville Plateau salamanders (Eurycea tonkawae), a species with a known range limited to eight stream drainages in central Texas. We based photoID on the unique pigmentation patterns on the dorsal head region of 1215 individual salamanders using identification software Wild-ID. We compared the performance of photoID methods to VIEs using both ‘high-quality’ and ‘low-quality’ images, which were taken using two different camera types and technologies. For high-quality images, the photoID method had a false rejection rate of 0.76% compared to 1.90% for VIEs. Using a comparable dataset of lower-quality images, the false rejection rate was much higher (15.9%). Photo matching scores were negatively correlated with time between captures, suggesting that evolving natural marks could increase misidentification rates in longer term capture-recapture studies. Our study demonstrates the utility of large-scale capture-recapture using photo identification methods for Eurycea and other species with stable natural marks that can be reliably photographed.
Oryx | 2014
Thomas A. Morrison; Douglas T. Bolger
Surprisingly little is known about the spatial dimensions of most tropical ungulate migrations, including that of wildebeest Connochaetes taurinus , a species famous for long-distance movements. Using non-invasive photographic identification of 834 adult wildebeest from 8,530 images collected over 4 years we characterize patterns of migratory connectivity throughout the northern Tarangire–Manyara Ecosystem, Tanzania. We document movements between Tarangire and Lake Manyara National Parks and northwards to the shore of Lake Natron, a straight-line distance of > 130 km. Fifty-six percent of observed movements occur outside the ecosystems three main protected areas. We supplement photographic data with fine-scale movement data from two individuals with global positioning system collars, and identify three narrow bottlenecks, each vulnerable to human development. We discuss the possible consequences for the wildebeest population if these bottlenecks become impeded. Persistence of this migration alongside a growing human population and proposed road improvement will require additional measures to ensure that pathways remain open to wildlife movement and protected from illegal hunting.
Ecography | 2018
Gareth P. Hempson; Catherine L. Parr; Sally Archibald; T. Michael Anderson; Colin J. Courtney Mustaphi; Andrew P. Dobson; Jason E. Donaldson; Thomas A. Morrison; James Probert; Colin M. Beale
Pyrodiversity, which describes fire variability over space and time, is believed to increase habitat heterogeneity and thereby promote biodiversity. However, to date there is no standardised metric for quantifying pyrodiversity, and so broad geographic patterns and drivers of pyrodiversity remain unexplored. We present the first generalizable method to quantify pyrodiversity, and use it to address the fundamental questions of what drives pyrodiversity, which fire attributes constrain pyrodiversity under different conditions, and whether pyrodiversity is spatial grain-dependent. We linked the MODIS burned area and active fire products to measure fire size, seasonal timing, return interval, and intensity for 2.2 million individual fires in sub-Saharan Africa from 2000–2015. We then quantified pyrodiversity as a four-dimensional hypervolume described by fire attributes within a grid cell, for any spatial grain of analysis. Environmental (rainfall, vegetation, soils, and topography) and human-associated (cattle biomass, cropland area, and human population density) variables were assessed as potential drivers of pyrodiversity. Rainfall was the main environmental driver of pyrodiversity, with higher pyrodiversity in drier regions (< 650 mm yr-1). Pyrodiversity was not strongly associated with human-associated variables across Africa. Rainfall and a human influence index had clear but contrasting effects on the variability of fire size, seasonal timing, return interval, and intensity. Our analyses show that fire size and seasonal timing constrain pyrodiversity in wetter regions, whereas none of the fire attributes pose a strong constraint in drier regions. We found no evidence that pyrodiversity was spatial grain-dependent when recalculated at 5-minute grain increments from 15 to 120 minutes. We hypothesise that the strongest positive effect of pyrodiversity on biodiversity in all its forms will occur at intermediate precipitation (650–1300 mm yr-1), where fire plays an important role in shaping vegetation structure and where pyrodiversity is still quite high. This article is protected by copyright. All rights reserved.
Ecology Letters | 2018
Colin M. Beale; Colin J. Courtney Mustaphi; Thomas A. Morrison; Sally Archibald; T. Michael Anderson; Andrew P. Dobson; Jason E. Donaldson; Gareth P. Hempson; James Probert; Catherine L. Parr
Abstract Fire is a fundamental process in savannas and is widely used for management. Pyrodiversity, variation in local fire characteristics, has been proposed as a driver of biodiversity although empirical evidence is equivocal. Using a new measure of pyrodiversity (Hempson et al.), we undertook the first continent‐wide assessment of how pyrodiversity affects biodiversity in protected areas across African savannas. The influence of pyrodiversity on bird and mammal species richness varied with rainfall: strongest support for a positive effect occurred in wet savannas (> 650 mm/year), where species richness increased by 27% for mammals and 40% for birds in the most pyrodiverse regions. Range‐restricted birds were most increased by pyrodiversity, suggesting the diversity of fire regimes increases the availability of rare niches. Our findings are significant because they explain the conflicting results found in previous studies of savannas. We argue that managing savanna landscapes to increase pyrodiversity is especially important in wet savannas.
Landscape Ecology | 2017
Monica L. Bond; Curtis M. Bradley; Christian Kiffner; Thomas A. Morrison; Derek E. Lee
ContextManagers are faced with numerous methods for delineating wildlife movement corridors, and often must make decisions with limited data. Delineated corridors should be robust to different data and models.ObjectivesWe present a multi-method approach for delineating and validating wildlife corridors using multiple data sources, which can be used conserve landscape connectivity. We used this approach to delineate and validate migration corridors for wildebeest (Connochaetes taurinus) in the Tarangire Ecosystem of northern Tanzania.MethodsWe used two types of locational data (distance sampling detections and GPS collar locations), and three modeling methods (negative binomial regression, logistic regression, and Maxent), to generate resource selection functions (RSFs) and define resistance surfaces. We compared two corridor detection algorithms (cost-distance and circuit theory), to delineate corridors. We validated corridors by comparing random and wildebeest locations that fell within corridors, and cross-validated by data type.ResultsBoth data types produced similar RSFs. Wildebeest consistently selected migration habitat in flatter terrain farther from human settlements. Validation indicated three of the combinations of data type, modeling, and corridor detection algorithms (detection data with Maxent modeling, GPS collar data with logistic regression modeling, and GPS collar data with Maxent modeling, all using cost-distance) far outperformed the other seven. We merged the predictive corridors from these three data-method combinations to reveal habitat with highest probability of use.ConclusionsThe use of multiple methods ensures that planning is able to prioritize conservation of migration corridors based on all available information.
Journal of Ecology | 2018
Thomas A. Morrison; Ricardo M. Holdo; Deusdedidth M. Rugemalila; Mawazo Nzunda; T. Michael Anderson
1. Savanna ecosystems span a diverse range of climates, edaphic conditions and disturbance regimes, the complexity of which has stimulated long‐standing interest in the mechanisms that maintain tree‐grass coexistence. One hypothesis suggests that tree establishment is strongly limited by one or several demographic bottlenecks at early stages of the tree life cycle. A major impediment to testing this hypothesis is the lack of data on the relative strengths of different bottlenecks across key environmental gradients. 2. To identify demographic bottlenecks that limit early tree establishment (0‐18 months), we conducted a series of transplant experiments with two savanna trees species (Acacia robusta and A. tortilis) across a natural rainfall and soil fertility gradient in the Serengeti ecosystem, Tanzania. We tested the interactive effects of precipitation, herbivory, seed scarification, grass competition, water limitation and tree species identity on two key life stages: germination and early seedling survival (0‐2 months) and juvenile seedling survival (2‐18 months). 3. Germination and early seedling survival increased as a function of rainfall, in the absence of herbivores and when seeds were scarified. Juvenile seedling survival, in contrast, decreased with rainfall but increased in the absence of herbivores. Grass removal had the single strongest (positive) effect on juvenile seedling survival of any treatment. Soil moisture monitoring and grass‐addition treatments revealed that grasses negatively affected seedlings in ways that were not necessarily linked to soil moisture. 4. A demographic model combining all effects across early life stages showed that the strength of grass competition on juvenile seedling survival was the key factor limiting early tree establishment. While rainfall had an unexpected opposing effect on the two life stages, the net effect of mean annual precipitation on early tree establishment was positive. 5. Synthesis: Successful tree establishment in Serengeti is maximized by a seemingly unlikely sequence of events: (1) scarification of seeds by browsers, (2) heavy rainfall to promote germination, (3) intensive grazing (but absence of browsers) and (4) dry conditions during juvenile seedling growth (>2 months) to reduce competition with grasses. By considering a wide suite of conditions and their interactions, our experimental results are relevant to ongoing debates about savanna vegetation dynamics and structural shifts in tree:grass ratios.
Journal of Animal Ecology | 2012
Thomas A. Morrison; Douglas T. Bolger
Journal of Ecology | 2016
Thomas A. Morrison; Ricardo M. Holdo; T. Michael Anderson