Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Ardito is active.

Publication


Featured researches published by Thomas Ardito.


Journal of The American Society of Nephrology | 2010

Inhibition of Podocyte FAK Protects against Proteinuria and Foot Process Effacement

Hong Ma; Akashi Togawa; Keita Soda; Junhui Zhang; Sik Lee; Ming Ma; Zhiheng Yu; Thomas Ardito; Jan Czyzyk; Lonnette Diggs; Dominique Joly; Shinji Hatakeyama; Eiji Kawahara; Lawrence B. Holzman; Jun-Lin Guan; Shuta Ishibe

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that plays a critical role in cell motility. Movement and retraction of podocyte foot processes, which accompany podocyte injury, suggest focal adhesion disassembly. To understand better the mechanisms by which podocyte foot process effacement leads to proteinuria and kidney failure, we studied the function of FAK in podocytes. In murine models, glomerular injury led to activation of podocyte FAK, followed by proteinuria and foot process effacement. Both podocyte-specific deletion of FAK and pharmacologic inactivation of FAK abrogated the proteinuria and foot process effacement induced by glomerular injury. In vitro, podocytes isolated from conditional FAK knockout mice demonstrated reduced spreading and migration; pharmacologic inactivation of FAK had similar effects on wild-type podocytes. In conclusion, FAK activation regulates podocyte foot process effacement, suggesting that pharmacologic inhibition of this signaling cascade may have therapeutic potential in the setting of glomerular injury.


Gastroenterology | 1995

A unique subset of rat and human intestinal villus cells express the cystic fibrosis transmembrane conductance regulator

Nadia A. Ameen; Thomas Ardito; Michael Kashgarian; Christopher R. Marino

BACKGROUND/AIMS In the intestine, the cystic fibrosis transmembrane conductance regulator (CFTR) has been localized to the apical pole of crypt epithelial cells. Recent data indicate that some villus cells may also express CFTR, although the identity of these cells has not been established. The aim of the current study was to characterize the distribution, morphology, and surface marker expression of CFTR-expressing villus cells. METHODS Immunofluorescence and immunoelectron microscopy was performed using anti-CFTR and enzyme marker antibodies. RESULTS In the rat and human proximal small intestine, a subpopulation of scattered villus and superficial crypt epithelial cells label brightly with anti-CFTR antibodies. The fluorescent signal is detected throughout the cells with its greatest concentration apically. At the ultrastructural level, labeling involves the brush border and a prominent subapical vesicular compartment. The cells resemble adjacent villus enterocytes in their abundance of mitochondria and expression of basolateral Na(+)-K(+)-adenosine triphosphatase yet differ in their absence of brush-border sucrase and lactase expression. CONCLUSIONS A previously uncharacterized subpopulation of villus cells with high levels of intracellular CFTR expression exists in the proximal small intestine. Morphological and cytochemical studies suggest that this subset of villus cells has a unique transport function.


Stroke | 1992

Indomethacin promotes germinal matrix microvessel maturation in the newborn beagle pup.

Laura R. Ment; William B. Stewart; Thomas Ardito; Eunice Y. Huang; Joseph A. Madri

Background and Purpose Although indomethacin has been demonstrated to prevent germinal matrix and intraventricular hemorrhage in clinical and animal studies, the mechanism of action of this agent to prevent hemorrhage remains unclear. Previous studies have demonstrated both that the microvessels in the germinal matrix of newborn beagle pups undergo basement membrane maturation during the first 4 postnatal days and that indomethacin may promote laminin deposition in tumor cell culture systems. Methods We employed the newborn beagle pup model to test the hypothesis that indomethacin may stimulate laminin deposition in germinal matrix microvessels. Newborn pups were randomized to receive either 0.1 mg/ kg/dose i.p. indomethacin or an equal volume of saline diluent. Pups received doses of study medication once a day for 1, 2, or 3 days and were studied on postnatal days 1, 2, 3, or 4. Pups were anesthetized and systemically perfused with buffered formalin; the brains were removed and prepared for immunohistochemical study. Results Sections stained with Bandeiraea lectin demonstrated that there was no difference in germinal matrix vessel density among the postnatal ages studied; similarly, there were no differences in vessel density between saline- and indomethacin-treated animals at any postnatal age. Quantification of germinal matrix stained intensity by confocal microscopy demonstrated significant increases in indomethacin- treated pups for both laminin staining at postnatal days 2 (p=0.05) and 3 (p=0.0009) and type V collagen staining at postnatal day 2 (p=0.011). Although staining for β1 integrins increased across postnatal ages, there were no differences between saline- and indomethacin-treated animals. Conclusions These data suggest that indomethacin may stimulate basement membrane deposition in the germinal matrix microvessels of newborn beagle pups to prevent germinal matrix and/or intraventricular hemorrhage.


Journal of The American Society of Nephrology | 2003

Hsp27 Associates with Actin and Limits Injury in Energy Depleted Renal Epithelia

Scott K. Van Why; Andrea Mann; Thomas Ardito; Gunilla Thulin; Sarah Ferris; Megan A. Macleod; Michael Kashgarian; Norman J. Siegel

The purpose of the study was to determine whether Hsp27 interacts with actin and could protect against selected manifestations of injury from energy depletion in renal epithelia. LLC-PK1 cells were stably transfected to overexpress human Hsp27 tagged with green fluorescence protein (GFP). Transfected expression of the labeled Hsp27 did not reduce endogenous Hsp25 levels in the cells compared with either nontransfected cells or cells transfected with GFP alone used as the transfectant control (G). By fluorescence energy transfer (FRET) between GFP-tagged Hsp27 and rhodamine phalloidin-decorated actin, minimal interaction was found in uninjured control cells. In ATP-depleted cells, Hsp27 was associated closely with F-actin at lateral cell boundaries and with aggregated actin within the cell body. Less Hsp27 interaction with actin was found during recovery; but when adjusted for total phalloidin fluorescence, FRET between Hsp27 and F-actin did not change between 2-h ATP depletion and 4-h recovery. Where Hsp27 association with actin persisted during recovery, it was principally with the residual aggregates of actin in the cell body. Detachment of Na,K-ATPase from the cytoskeleton at 2-h ATP depletion was significantly less in Hsp27 cells compared with transfectant control G cells but not at 4-h ATP depletion. Detachment of ezrin from the cytoskeleton during ATP depletion was nearly complete and was not prevented in the Hsp27 cells. Protection of the Hsp27 cells was not attributable to preservation of cellular ATP levels. Hsp27 appears to have specific actions in renal epithelia subjected to energy depletion, including interacting with actin to preserve architecture in specific intracellular domains.


American Journal of Physiology-renal Physiology | 1998

Heat-shock protein 25 induction and redistribution during actin reorganization after renal ischemia

Christoph Aufricht; Thomas Ardito; Gunilla Thulin; Michael Kashgarian; Norman J. Siegel; Scott K. Van Why

The small heat-shock proteins appear to have a regulatory role in actin dynamics. Since cytoskeletal disruption is integral to ischemic renal injury, we evaluated expression and intracellular distribution of heat-shock protein 25 (HSP-25) in rat renal cortex after 45 min of renal ischemia. HSP-25 was constitutively expressed and induced by ischemia with peak levels reached by 6 h reflow. Ischemia caused a shift of HSP-25 from the detergent-soluble into the insoluble cytoskeletal fraction. By 2 h reflow, the majority of HSP-25 had redistributed into the soluble fraction. HSP-25 was predominantly localized in a subapical distribution in control proximal tubules, a pattern intermediate between deoxyribonuclease (DNase)-reactive and filamentous actin. After ischemia, HSP-25 dispersed through the cytoplasm with small punctate accumulations similar to DNase-reactive actin. During later reflow, all three proteins were found in coarse intracytoplasmic accumulations; however, HSP-25 and DNase-reactive actin were in separate accumulations. HSP-25 and microfilamentous actin staining returned to the subapical domain. Thus the temporal and spatial patterns of HSP-25 induction and distribution suggest specific interactions between HSP-25 and actin during the early postischemic reorganization of the cytoskeleton. HSP-25 may have additional roles distinct from actin dynamics later in the course of postischemic recovery.


American Journal of Physiology-renal Physiology | 2011

Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia

Patricia Seo-Mayer; Gunilla Thulin; Li Zhang; Daiane S. Alves; Thomas Ardito; Michael Kashgarian; Michael J. Caplan

Alterations in epithelial cell polarity and in the subcellular distributions of epithelial ion transport proteins are key molecular consequences of acute kidney injury and intracellular energy depletion. AMP-activated protein kinase (AMPK), a cellular energy sensor, is rapidly activated in response to renal ischemia, and we demonstrate that its activity is upregulated by energy depletion in Madin-Darby canine kidney (MDCK) cells. We hypothesized that AMPK activity may influence the maintenance or recovery of epithelial cell organization in mammalian renal epithelial cells subjected to energy depletion. MDCK cells were ATP depleted through a 1-h incubation with antimycin A and 2-deoxyglucose. Immunofluoresence localization demonstrated that this regimen induces mislocalization of the Na-K-ATPase from its normal residence at the basolateral plasma membrane to intracellular vesicular compartments. When cells were pretreated with the AMPK activator metformin before energy depletion, basolateral localization of Na-K-ATPase was preserved. In MDCK cells in which AMPK expression was stably knocked down with short hairpin RNA, preactivation of AMPK with metformin did not prevent Na-K-ATPase redistribution in response to energy depletion. In vivo studies demonstrate that metformin activated renal AMPK and that treatment with metformin before renal ischemia preserved cellular integrity, preserved Na-K-ATPase localization, and led to reduced levels of neutrophil gelatinase-associated lipocalin, a biomarker of tubular injury. Thus AMPK may play a role in preserving the functional integrity of epithelial plasma membrane domains in the face of energy depletion. Furthermore, pretreatment with an AMPK activator before ischemia may attenuate the severity of renal tubular injury in the context of acute kidney injury.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Targeted deletion of βIII spectrin impairs synaptogenesis and generates ataxic and seizure phenotypes

Michael C. Stankewich; Babette Gwynn; Thomas Ardito; Lan Ji; Jung H. Kim; Raymond F. Robledo; Samuel E. Lux; Luanne L. Peters; Jon S. Morrow

The spectrin membrane skeleton controls the disposition of selected membrane channels, receptors, and transporters. In the brain βIII spectrin binds directly to the excitatory amino acid transporter (EAAT4), the glutamate receptor delta, and other proteins. Mutations in βIII spectrin link strongly to human spinocerebellar ataxia type 5 (SCA5), correlating with alterations in EAAT4. We have explored the mechanistic basis of this phenotype by targeted gene disruption of Spnb3. Mice lacking intact βIII spectrin develop normally. By 6 months they display a mild nonprogressive ataxia. By 1 year most Spnb3−/− animals develop a myoclonic seizure disorder with significant reductions of EAAT4, EAAT1, GluRδ, IP3R, and NCAM140. Other synaptic proteins are normal. The cerebellum displays increased dark Purkinje cells (PC), a thin molecular layer, fewer synapses, a loss of dendritic spines, and a 2-fold expansion of the PC dendrite diameter. Membrane and expanded Golgi profiles fill the PC dendrite and soma, and both regions accumulate EAAT4. Correlating with the seizure disorder are enhanced hippocampal levels of neuropeptide Y and EAAT3 and increased calpain proteolysis of αII spectrin. It appears that βIII spectrin disruption impairs synaptogenesis by disturbing the intracellular pathways selectively regulating protein trafficking to the synapse. The mislocalization of these proteins secondarily disrupts glutamate transport dynamics, leading to seizures, neuronal damage, and compensatory changes in EAAT3 and neuropeptide Y.


Journal of The American Society of Nephrology | 2012

Increased Tubular Proliferation as an Adaptive Response to Glomerular Albuminuria

Jian-Kan Guo; Arnaud Marlier; Hongmei Shi; Alan Shan; Thomas Ardito; Zhaopeng Du; Michael Kashgarian; Diane S. Krause; Daniel Biemesderfer; Lloyd G. Cantley

Renal tubular atrophy accompanies many proteinuric renal diseases, suggesting that glomerular proteinuria injures the tubules. However, local or systemic inflammation and filtration of abnormal proteins known to directly injure tubules are also present in many of these diseases and animal models; therefore, whether glomerular proteinuria directly causes tubular injury is unknown. Here, we examined the renal response to proteinuria induced by selective podocyte loss. We generated mice that express the diphtheria toxin receptor exclusively in podocytes, allowing reproducible dose-dependent, specific ablation of podocytes by administering diphtheria toxin. Ablation of <20% of podocytes resulted in profound albuminuria that resolved over 1-2 weeks after the re-establishment of normal podocyte morphology. Immediately after the onset of albuminuria, proximal tubule cells underwent a transient burst of proliferation without evidence of tubular damage or increased apoptosis, resulting in an increase in total tubular cell numbers. The proliferative response coincided with detection of the growth factor Gas6 in the urine and phosphorylation of the Gas6 receptor Axl in the apical membrane of renal tubular cells. In contrast, ablation of >40% of podocytes led to progressive glomerulosclerosis, profound tubular injury, and renal failure. These data suggest that glomerular proteinuria in the absence of severe structural glomerular injury activates tubular proliferation, potentially as an adaptive response to minimize the loss of filtered proteins.


Transplantation | 1992

The effect of cyclosporine administration on the cellular distribution and content of cyclophilin.

Monica L. McDONALD; Thomas Ardito; William H. Marks; Michael Kashgarian; Marc I. Lorber

Cyclophilin (CYP), an intracellular protein sharing amino acid sequence identity with the enzyme peptidyl-prolyl cis-trans isomerase has become the leading candidate for the receptor responsible for cyclosporine biological effects. Avid binding of CYP to cyclosporine and immunosuppressive cyclosporine metabolites has been demonstrated, while nonimmunosuppressive cyclosporine metabolites have tended not to bind to cyclophilin. A previous immunohistochemical analysis documented that CYP localized principally to the cytoplasmic cellular compartment, but nuclear staining was observed among some cells. This study was undertaken to more precisely define the ultrastructural distribution of CYP, and to determine whether CYP cellular content was affected by CsA therapy. Untreated Wistar rats or those receiving 7 days of CsA (15 mg/kg/day, i.p.) were anesthetized, perfusion-fixed in situ, and sacrificed. Analyses of lymph node, spleen, thymus, kidney, liver, heart, brain, and ileum used an affinity purified, rabbit anticyclophilin IgG. Transmission electron microscopy was performed after staining with anti-CYP using a horseradish peroxidase/biotin/avidin technique. Quantitative immunofluorescence was measured by confocal microscopy using anti-CYP, with a biotin/avidin/phycoerythrin technique. Cyclophilin localized to the cytoplasmic compartment--however, association with mitochondria endoplasmic reticulum, Golgi, and with the nuclear membrane among lymphocytes, as well as cells from kidney, liver and ileum--was documented. Cyclophilin was not identified within the nucleus proper. Tissues obtained from animals receiving CsA exhibited a generalized increase in CYP content compared with tissues from untreated controls, suggesting the possibility that CsA may exert a regulatory influence upon CYP gene activation. Collectively, the data were consistent with the hypothesis that CYP exerts a central role in cellular metabolism, and that CsA-mediated biologic effects result from the CsA/CYP interaction.


Bone | 2014

Deletion of mecom in mouse results in early-onset spinal deformity and osteopenia

Subhash C. Juneja; Alin Vonica; Caroline Zeiss; Kimberly Lezon-Geyda; Bogdan Yatsula; David R. Sell; Vincent M. Monnier; Sharon Lin; Thomas Ardito; David R. Eyre; David G. Reynolds; Zhenqiang Yao; Hani A. Awad; Hongbo Yu; Michael Wilson; Sylvie Honnons; Brendan F. Boyce; Lianping Xing; Yi Zhang; Archibald S. Perkins

Recent studies have indicated a role for a MECOM allele in susceptibility to osteoporotic fractures in humans. We have generated a mutation in Mecom in mouse (termed ME(m1)) via lacZ knock-in into the upstream transcription start site for the gene, resulting in disruption of Mds1 and Mds1-Evi1 transcripts, but not of Evi1 transcripts. We demonstrate that ME(m1/m1) mice have severe kyphoscoliosis that is reminiscent of human congenital or primary kyphoscoliosis. ME(m1/m1) mice appear normal at birth, but by 2weeks, they exhibit a slight lumbar lordosis and narrowed intervertebral space. This progresses to severe lordosis with disc collapse and synostosis, together with kyphoscoliosis. Bone formation and strength testing show that ME(m1/m1) mice have normal bone formation and composition but are osteopenic. While endochondral bone development is normal, it is markedly dysplastic in its organization. Electron micrographs of the 1week postnatal intervertebral discs reveals marked disarray of collagen fibers, consistent with an inherent weakness in the non-osseous connective tissue associated with the spine. These findings indicate that lack of ME leads to a complex defect in both osseous and non-osseous musculoskeletal tissues, including a marked vertebral osteopenia, degeneration of the IVD, and disarray of connective tissues, which is likely due to an inherent inability to establish and/or maintain components of these tissues.

Collaboration


Dive into the Thomas Ardito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge