Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas B. Tomasi is active.

Publication


Featured researches published by Thomas B. Tomasi.


Journal of Immunology | 2000

Activation of MHC Class I, II, and CD40 Gene Expression by Histone Deacetylase Inhibitors

William J. Magner; A. Latif Kazim; Carleton C. Stewart; Michelle A. Romano; Geoffrey Catalano; Catherine Grande; Nicholas Keiser; Frank Santaniello; Thomas B. Tomasi

Epigenetic mechanisms are involved in regulating chromatin structure and gene expression through repression. In this study, we show that histone deacetylase inhibitors (DAIs) that alter the acetylation of histones in chromatin enhance the expression of several genes on tumor cells including: MHC class I, II, and the costimulatory molecule CD40. Enhanced transcription results in a significant increase in protein expression on the tumor cell surface, and expression can be elicited on some tumors that are unresponsive to IFN-γ. The magnitude of induction of these genes cannot be explained by the effect of DAIs on the cell cycle or enhanced apoptosis. Induction of class II genes by DAIs was accompanied by activation of a repressed class II transactivator gene in a plasma cell tumor but, in several other tumor cell lines, class II was induced in the apparent absence of class II transactivator transcripts. These findings also suggest that the abnormalities observed in some tumors in the expression of genes critical to tumor immunity may result from epigenetic alterations in chromatin and gene regulation in addition to well-established mutational mechanisms.


Cancer Immunology, Immunotherapy | 2008

Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells

A. Nazmul H. Khan; Christopher J. Gregorie; Thomas B. Tomasi

Histone deacetylase inhibitors (HDACi), including trichostatin A (TSA) and valproic acid, can alter the acetylation of histones in chromatin and enhance gene transcription. Previously we demonstrated that HDACi-treated tumor cells are capable of presenting antigen via the MHC class II pathway. In this study, we show that treatment with HDACi enhances the expression of molecules (TAP1, TAP2, LMP2, LMP7, Tapasin and MHC class I) involved in antigen processing and presentation via the MHC class I pathway in melanoma cells. HDACi treatment of B16F10 cells also enhanced cell surface expression of classxa0I and costimulatory molecules CD40 and CD86. Enhanced transcription of these genes is associated with a significant increase in direct presentation of whole protein antigen and MHC class I-restricted peptides by TSA-treated B16F10 cells. Our data indicate that epigenetic modification can convert a tumor cell to an antigen presenting cell capable of activating IFN-γ secreting T cells via the class I pathway. These findings suggest that the abnormalities, observed in some tumors in the expression of MHC class I antigen processing and presentation molecules, may result from epigenetic repression.


Cytokine | 2009

miRNA regulation of cytokine genes

Ananthi J. Asirvatham; William J. Magner; Thomas B. Tomasi

In this review we discuss specific examples of regulation of cytokine genes and focus on a new mechanism involving post-transcriptional regulation via miRNAs. The post-transcriptional regulation of cytokine genes via the destabilizing activity of AU-rich elements [AREs] and miRNAs is a pre-requisite for regulating the half-life of many cytokines and achieving the temporal and spatial distributions required for regulation of these genes.


Cancer Immunology, Immunotherapy | 2006

Epigenetic regulation of immune escape genes in cancer

Thomas B. Tomasi; William J. Magner; A. Nazmul H. Khan

According to the concept of immune surveillance, the appearance of a tumor indicates that it has earlier evaded host defenses and subsequently must have escaped immunity to evolve into a full-blown cancer. Tumor escape mechanisms have focused mainly on mutations of immune and apoptotic pathway genes. However, data obtained over the past few years suggest that epigenetic silencing in cancer may be as frequent a cause of gene inactivation as are mutations. Here, we discuss the evidence that tumor immune evasion is mediated by non-mutational epigenetic events involving chromatin and that epigenetics collaborates with mutations in determining tumor progression. Since epigenetic changes are potentially reversible, the relative contribution of mutations and epigenetics, to the gene defects in any given tumor, may be a factor in determining the efficacy of treatments. We review new developments in basic chromatin mechanisms and in this context describe the rationale for the current use of epigenetic agents in cancer therapy and for a novel epigenetically generated tumor vaccine model. We emphasize that epigenetic cancer treatments are currently a ‘blunt-sword’ and suggest future directions for designing chromatin-based programs of potential value in the diagnosis and treatment of cancer.


Cancer Immunology, Immunotherapy | 2004

An epigenetically altered tumor cell vaccine

A. Nazmul H. Khan; William J. Magner; Thomas B. Tomasi

Functional inactivation of genes critical to immunity may occur by mutation and/or by repression, the latter being potentially reversible with agents that modify chromatin. This study was constructed to determine whether reversal of gene silencing, by altering the acetylation status of chromatin, might lead to an effective tumor vaccine. We show that the expression of selected genes important to tumor immunity, including MHC class II, CD40, and B7-1/2 are altered by treating tumor cells in vitro with a histone deacetylase inhibitor, trichostatin A (TSA). Tumor cells treated in vitro with TSA showed delayed onset and rate of tumor growth in 70% of the J558 plasmacytoma and 100% of the B16 melanoma injected animals. Long-term tumor specific immunity was elicited to rechallenge with wild-type cells in approximately 30% in both tumor models. Splenic T cells from immune mice lysed untreated tumor cells, and SCID mice did not manifest immunity, suggesting that T cells may be involved in immunity. We hypothesize that repression of immune genes is involved in the evasion of immunity by tumors and suggest that epigenetically altered cancer cells should be further explored as a strategy for the induction of tumor immunity.


Journal of Translational Medicine | 2007

An epigenetic vaccine model active in the prevention and treatment of melanoma.

A. Nazmul H. Khan; William J. Magner; Thomas B. Tomasi

BackgroundNumerous immune genes are epigenetically silenced in tumor cells and agents such as histone deacetylase inhibitors (HDACi), which reverse these effects, could potentially be used to develop therapeutic vaccines. The conversion of cancer cells to antigen presenting cells (APCs) by HDACi treatment could potentially provide an additional pathway, together with cross-presentation of tumor antigens by host APCs, to establish tumor immunity.MethodsHDACi-treated B16 melanoma cells were used in a murine vaccine model, lymphocyte subset depletion, ELISpot and Cytotoxicity assays were employed to evaluate immunity. Antigen presentation assays, vaccination with isolated apoptotic preparations and tumorigenesis in MHC-deficient mice and radiation chimeras were performed to elucidate the mechanisms of vaccine-induced immunity.ResultsHDACi treatment enhanced the expression of MHC class II, CD40 and B7-1/2 on B16 cells and vaccination with HDACi-treated melanoma cells elicited tumor specific immunity in both prevention and treatment models. Cytotoxic and IFN-γ-producing cells were identified in splenocytes and CD4+, CD8+ T cells and NK cells were all involved in the induction of immunity. Apoptotic cells derived from HDACi treatments, but not H2O2, significantly enhanced the effectiveness of the vaccine. HDACi-treated B16 cells become APCs in vitro and studies in chimeras defective in cross presentation demonstrate direct presentation in vivo and short-term but not memory responses and long-term immunity.ConclusionThe efficacy of this vaccine derives mainly from cross-presentation which is enhanced by HDACi-induced apoptosis. Additionally, epigenetic activation of immune genes may contribute to direct antigen presentation by tumor cells. Epigenetically altered cancer cells should be further explored as a vaccine strategy.


Immunologic Research | 2008

Histone deacetylase regulation of immune gene expression in tumor cells.

A. Nazmul H. Khan; Thomas B. Tomasi

Epigenetic modifications of chromatin, such as histone acetylation, are involved in repression of tumor antigens and multiple immune genes that are thought to facilitate tumor escape. The status of acetylation in a cell is determined by the balance of the activities of histone acetyltransferases and histone deacetylases. Inhibitors of histone deacetylase (HDACi) can enhance the expression of immunologically important molecules in tumor cells and HDACi treated tumor cells are able to induce immune responses in vitro and in vivo. Systemic HDACi are in clinical trails in cancer and also being used in several autoimmune disease models. To date, 18 HDACs have been reported in human cells and more than thirty HDACi identified, although only a few immune targets of these inhibitors have been identified. Here, we discuss the molecular pathways employed by HDACi and their potential role in inducing immune responses against tumors. We review data suggesting that selection of target specific HDACi and combinations with other agents and modalities, including those that activate stress pathways, may further enhance the efficacy of epigenetic therapies.


Immunological Investigations | 2014

Dicer in immune cell development and function.

Anand S. Devasthanam; Thomas B. Tomasi

Dicer is an enzyme of the RNase III endoribonuclease family, which is crucial for RNA interference (RNAi) in eukaryotes. Dicer is a component of the protein machinery (the RNA Induced Silencing Complex [RISC]) which is involved in catalyzing the formation of mature microRNAs from their precursors in the process of microRNA biogenesis. RISC-associated microRNAs bind to specific sequences in the 3’ untranslated region of cognate mRNAs largely through complementary base pairing, resulting in either translational inhibition and/or the degradation of a specific mRNA pool. MicroRNAs epigenetically regulate the cellular levels of receptors, transcription factors and signaling proteins that govern the developmental pathways and functions of multiple cellular processes. The pivotal role played by Dicer in microRNA formation has also piqued the interest of molecular immunologists who have sought to understand the biological relevance of microRNAs in the development and function of the immune system. Here, we review the major findings of these studies and provide an overview of the role of Dicer and microRNAs in immune cell development and function. Additionally, we highlight deficiencies in our knowledge and new research areas that may enhance our understanding of the role of Dicer and microRNAs in immunity.


Journal of Neuroimmunology | 2016

Dicer and microRNA expression in multiple sclerosis and response to interferon therapy

William J. Magner; Bianca Weinstock-Guttman; Mina Rho; David Hojnacki; Rabia Ghazi; Murali Ramanathan; Thomas B. Tomasi

Dysregulation of microRNA expression has been shown in multiple sclerosis (MS); however, the mechanisms underlying these changes, their response to therapy and the impact of microRNA changes in MS are not completely understood. Dicer mediates the cleavage of precursor microRNAs to mature microRNAs and is dysregulated in multiple pathologies. Having shown that interferons regulate Dicer in vitro, we hypothesized that MS patient IFNβ1a treatment could potentially alter Dicer expression. Dicer mRNA and protein levels, as well as microRNA expression, were determined in MS patient and healthy control PBL. Acute responses to IFNβ1a were assessed in 50 patients. We found that Dicer protein but not mRNA levels decreases in MS patients while both are selectively induced in patients responding well to IFNβ1a. Potential microRNA biomarkers for relapsing remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS) and IFNβ1a response are described. Contrasts in Dicer and microRNA expression levels between patient populations may offer insight into mechanisms underlying disease courses and responses to IFNβ1a therapy. This work identifies Dicer regulation as both a potential mediator of MS pathology and a therapeutic target.


Journal of Reproductive Immunology | 2009

Restoration of immune response gene induction in trophoblast tumor cells associated with cellular senescence

Christopher J. Gregorie; Jennifer L. Wiesen; William J. Magner; Athena W. Lin; Thomas B. Tomasi

Trophoblast cells and many cancer cells that harbor foreign antigens may evade immunity by epigenetic silencing of key immune response genes, including MHC class I and II and CD40. Chromatin active agents, such as histone deacetylase inhibitors (HDACi), induce immune response gene expression but often the expression levels are low and the cells lack a robust antigen presentation response. We show here that pre-treatment of trophoblast cells and certain cancer cells with agents that activate stress pathways (Ras oncogene, PMA or H2O2) and induce senescence can substantially enhance the induction of immune response genes (MHC class II, CD40, MICA, MICB) by HDACi and restore a vigorous IFN-gamma response in trophoblast cells and tumor cells. These results could potentially impact the development of novel anti-cancer therapeutic strategies.

Collaboration


Dive into the Thomas B. Tomasi's collaboration.

Top Co-Authors

Avatar

William J. Magner

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

A. Nazmul H. Khan

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand S. Devasthanam

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ananthi J. Asirvatham

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Wiesen

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Julian Z. Oshlag

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

A. Latif Kazim

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Alex N. Pontikos

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Athena W. Lin

Cold Spring Harbor Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge