Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Balenghien is active.

Publication


Featured researches published by Thomas Balenghien.


Parasites & Vectors | 2011

Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae), vectors of Orbiviruses

Elvina Viennet; Claire Garros; Renaud Lancelot; Xavier Allene; Laëtitia Gardes; Ignace Rakotoarivony; Didier Crochet; Jean Claude Delecolle; Catherine Moulia; Thierry Baldet; Thomas Balenghien

BackgroundThe emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic Culicoides (Diptera: Ceratopogonidae) to transmit the virus. Some aspects of Culicoides ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates.Our aim was to compare typical animal-baited traps (drop trap and direct aspiration) to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect Culicoides).Methods/resultsCollections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France), with 3 replicates of a 4 sites × 4 traps randomized Latin square using one sheep per site. Collected Culicoides individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 Culicoides belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species) whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species). Significant between-trap differences abundance and parity rates were observed.ConclusionsOnly the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of Culicoides and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate accurately Culicoides biting rate.


International Journal of Environmental Research and Public Health | 2013

A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations

Annelise Tran; Grégory L'Ambert; Guillaume Lacour; Romain Benoît; Marie Demarchi; Myriam Cros; Priscilla Cailly; Mélaine Aubry-Kientz; Thomas Balenghien; Pauline Ezanno

The mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) is an invasive species which has colonized Southern Europe in the last two decades. As it is a competent vector for several arboviruses, its spread is of increasing public health concern, and there is a need for appropriate monitoring tools. In this paper, we have developed a modelling approach to predict mosquito abundance over time, and identify the main determinants of mosquito population dynamics. The model is temperature- and rainfall-driven, takes into account egg diapause during unfavourable periods, and was used to model the population dynamics of Ae. albopictus in the French Riviera since 2008. Entomological collections of egg stage from six locations in Nice conurbation were used for model validation. We performed a sensitivity analysis to identify the key parameters of the mosquito population dynamics. Results showed that the model correctly predicted entomological field data (Pearson r correlation coefficient values range from 0.73 to 0.93). The model’s main control points were related to adult’s mortality rates, the carrying capacity in pupae of the environment, and the beginning of the unfavourable period. The proposed model can be efficiently used as a tool to predict Ae. albopictus population dynamics, and to assess the efficiency of different control strategies.


Molecular Ecology | 2009

Population sizes and dispersal pattern of tsetse flies: rolling on the river?

Jérémy Bouyer; Thomas Balenghien; Sophie Ravel; Laurence Vial; Issa Sidibé; S. Thévenon; Philippe Solano; T. De Meeûs

The West African trypanosomoses are mostly transmitted by riverine species of tsetse fly. In this study, we estimate the dispersal and population size of tsetse populations located along the Mouhoun river in Burkina Faso where tsetse habitats are experiencing increasing fragmentation caused by human encroachment. Dispersal estimated through direct (mark and recapture) and indirect (genetic isolation by distance) methods appeared consistent with one another. In these fragmented landscapes, tsetse flies displayed localized, small subpopulations with relatively short effective dispersal. We discuss how such information is crucial for designing optimal strategies for eliminating this threat. To estimate ecological parameters of wild animal populations, the genetic measures are both a cost‐ and time‐effective alternative to mark–release–recapture. They can be applied to other vector‐borne diseases of medical and/or economic importance.


Parasites & Vectors | 2012

Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region

Bruno Mathieu; Catherine Cetre-Sossah; Claire Garros; David Chavernac; Thomas Balenghien; Simon Carpenter; Marie-Laure Setier-Rio; Régine Vignes-Lebbe; Visotheary Ung; Ermanno Candolfi; Jean-Claude Delécolle

Background and methodsThe appearance of bluetongue virus (BTV) in 2006 within northern Europe exposed a lack of expertise and resources available across this region to enable the accurate morphological identification of species of Culicoides Latreille biting midges, some of which are the major vectors of this pathogen. This work aims to organise extant Culicoides taxonomic knowledge into a database and to produce an interactive identification key for females of Culicoides in the Western Palaearctic (IIKC: Interactive identification key for Culicoides). We then validated IIKC using a trial carried out by six entomologists based in this region with variable degrees of experience in identifying Culicoides.ResultsThe current version of the key includes 98 Culicoides species with 10 morphological variants, 61 descriptors and 837 pictures and schemes. Validation was carried out by six entomologists as a blind trial with two users allocated to three classes of expertise (beginner, intermediate and advanced). Slides were identified using a median of seven steps and seven minutes and user confidence in the identification varied from 60% for failed identifications to a maximum of 80% for successful ones. By user class, the beginner group successfully identified 44.6% of slides, the intermediate 56.8% and the advanced 74.3%.ConclusionsStructured as a multi-entry key, IIKC is a powerful database for the morphological identification of female Culicoides from the Western Palaearctic region. First developed for use as an interactive identification key, it was revealed to be a powerful back-up tool for training new taxonomists and to maintain expertise level. The development of tools for arthropod involvement in pathogen transmission will allow clearer insights into the ecology and dynamics of Culicoides and in turn assist in understanding arbovirus epidemiology.


Preventive Veterinary Medicine | 2014

The emergence of Schmallenberg virus across Culicoides communities and ecosystems in Europe

Thomas Balenghien; Nonito Pagès; Maria Goffredo; Simon Carpenter; Denis Augot; Elisabeth Jacquier; Sandra Talavera; Federica Monaco; Jérôme Depaquit; Colette Grillet; Joan Pujols; Giuseppe Satta; Mohamed Kasbari; Marie-Laure Setier-Rio; Francesca Izzo; Cigdem Alkan; Jean Claude Delecolle; Michela Quaglia; Rémi N. Charrel; Andrea Polci; Emmanuel Bréard; Valentina Federici; Catherine Cetre-Sossah; Claire Garros

Schmallenberg virus (SBV), a novel arboviral pathogen, has emerged and spread across Europe since 2011 inflicting congenital deformities in the offspring of infected adult ruminants. Several species of Culicoides biting midges (Diptera: Ceratopogonidae) have been implicated in the transmission of SBV through studies conducted in northern Europe. In this study Culicoides from SBV outbreak areas of mainland France and Italy (Sardinia) were screened for viral RNA. The role of both C. obsoletus and the Obsoletus complex (C. obsoletus and C. scoticus) in transmission of SBV were confirmed in France and SBV was also discovered in a pool of C. nubeculosus for the first time, implicating this species as a potential vector. While collections in Sardinia were dominated by C. imicola, only relatively small quantities of SBV RNA were detected in pools of this species and conclusive evidence of its potential role in transmission is required. In addition to these field-based studies, infection rates in colony-derived individuals of C. nubeculosus and field-collected C. scoticus are also examined in the laboratory. Rates of infection in C. nubeculosus were low, confirming previous studies, while preliminary examination of C. scoticus demonstrated that while this species can replicate SBV to a potentially transmissible level, further work is required to fully define comparative competence between species in the region. Finally, the oral competence for SBV of two abundant and widespread mosquito vector species in the laboratory is assessed. Neither Aedes albopictus nor Culex pipiens were demonstrated to replicate SBV to transmissible levels and appear unlikely to play a major role in transmission. Other vector competence data produced from studies across Europe to date is then comprehensively reviewed and compared with that generated previously for bluetongue virus.


PLOS ONE | 2012

Host-Seeking Activity of Bluetongue Virus Vectors: Endo/Exophagy and Circadian Rhythm of Culicoides in Western Europe

Elvina Viennet; Claire Garros; Ignace Rakotoarivony; Xavier Allene; Laëtitia Gardes; Jonathan Lhoir; Ivanna Fuentes; Roger Venail; Didier Crochet; Renaud Lancelot; Mickaël Riou; Catherine Moulia; Thierry Baldet; Thomas Balenghien

Feeding success of free-living hematophagous insects depends on their ability to be active when hosts are available and to reach places where hosts are accessible. When the hematophagous insect is a vector of pathogens, determining the components of host-seeking behavior is of primary interest for the assessment of transmission risk. Our aim was to describe endo/exophagy and circadian host-seeking activity of Palaearctic Culicoides species, which are major biting pests and arbovirus vectors, using drop traps and suction traps baited with four sheep, as bluetongue virus hosts. Collections were carried out in the field, a largely-open stable and an enclosed stable during six collection periods of 24 hours in April/May, in late June and in September/October 2010 in western France. A total of 986 Culicoides belonging to 13 species, mainly C. brunnicans and C. obsoletus, was collected on animal baits. Culicoides brunnicans was clearly exophagic, whereas C. obsoletus was able to enter stables. Culicoides brunnicans exhibited a bimodal pattern of host-seeking activity with peaks just after sunrise and sunset. Culicoides obsoletus was active before sunset in spring and autumn and after sunset in summer, thus illustrating influence of other parameters than light, especially temperature. Description of host-seeking behaviors allowed us to discuss control strategies for transmission of Culicoides-borne pathogens, such as bluetongue virus. However, practical vector-control recommendations are difficult to provide because of the variation in the degree of endophagy and time of host-seeking activity.


Veterinary Research | 2013

Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean

Thomas Balenghien; Eric Cardinale; Véronique Chevalier; Nohal Elissa; Anna-Bella Failloux; Thiery Nirina Jean Jose Nipomichene; Gaëlle Nicolas; Vincent Michel Rakotoharinome; Matthieu Roger; Betty Zumbo

Rift Valley fever virus (Phlebovirus, Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007–2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean.


Infection, Genetics and Evolution | 2015

Culicoides Latreille (Diptera: Ceratopogonidae) taxonomy: current challenges and future directions

Lara E. Harrup; Glenn A Bellis; Thomas Balenghien; Claire Garros

Highlights • We review tools for Culicoides species identification using both morphological and genetic characterisation.• We review progress in integrative taxonomy in Culicoides.• We present the current global status of Culicoides taxonomic knowledge.• Present conclusions on the current status in Culicoides taxonomy and systematics and prospects for the future.


PLOS ONE | 2013

First record of Culicoides oxystoma Kieffer and diversity of species within the Schultzei group of Culicoides Latreille (Diptera: Ceratopogonidae) biting midges in Senegal

Mame Thierno Bakhoum; Moussa Fall; Assane Gueye Fall; Glenn A Bellis; Yuval Gottlieb; Karien Labuschagne; Gert J. Venter; Mariame Diop; Iba Mall; Momar Talla Seck; Xavier Allene; Maryam Diarra; Laëtitia Gardes; Jérémy Bouyer; Jean Claude Delecolle; Thomas Balenghien; Claire Garros

The Schultzei group of Culicoides Latreille (Diptera: Ceratopogonidae) is distributed throughout Africa to northern Asia and Australasia and includes several potential vector species of livestock pathogens. The taxonomy of the species belonging to this species group is confounded by the wide geographical distribution and morphological variation exhibited by many species. In this work, morphological and molecular approaches were combined to assess the taxonomic validity of the species and morphological variants of the Schultzei group found in Senegal by comparing their genetic diversity with that of specimens from other geographical regions. The species list for Senegal was updated with four species: Culicoides kingi, C. oxystoma, C. enderleini and C. nevilli being recorded. This is the first record of C. oxystoma from Africa south of Sahara, and its genetic relationship with samples from Israel, Japan and Australia is presented. This work provides a basis for ecological studies of the seasonal and spatial dynamics of species of this species group that will contribute to better understanding of the epidemiology of the viruses they transmit.


Transboundary and Emerging Diseases | 2013

A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy.

Annelise Tran; Carla Ippoliti; Thomas Balenghien; Annamaria Conte; Marie Gély; Paolo Calistri; Maria Goffredo; Thierry Baldet; Véronique Chevalier

Rift Valley fever (RVF) is a severe mosquito-borne disease that is caused by a Phlebovirus (Bunyaviridae) and affects domestic ruminants and humans. Recently, its distribution widened, threatening Europe. The probability of the introduction and large-scale spread of Rift Valley fever virus (RVFV) in Europe is low, but localized RVF outbreaks may occur in areas where populations of ruminants and potential vectors are present. In this study, we assumed the introduction of the virus into Italy and focused on the risk of vector-borne transmission of RVFV to three main European potential hosts (cattle, sheep and goats). Five main potential mosquito vectors belonging to the Culex and Aedes genera that are present in Italy were identified in a literature review. We first modelled the geographical distribution of these five species based on expert knowledge and using land cover as a proxy of mosquito presence. The mosquito distribution maps were compared with field mosquito collections from Italy to validate the model. Next, the risk of RVFV transmission was modelled using a multicriteria evaluation (MCE) approach, integrating expert knowledge and the results of a literature review on host sensitivity and vector competence, feeding behaviour and abundance. A sensitivity analysis was performed to assess the robustness of the results with respect to expert choices. The resulting maps include (i) five maps of the vector distribution, (ii) a map of suitable areas for vector-borne transmission of RVFV and (iii) a map of the risk of RVFV vector-borne transmission to sensitive hosts given a viral introduction. Good agreement was found between the modelled presence probability and the observed presence or absence of each vector species. The resulting RVF risk map highlighted strong spatial heterogeneity and could be used to target surveillance. In conclusion, the geographical information system (GIS)-based MCE served as a valuable framework and a flexible tool for mapping the areas at risk of a pathogen that is currently absent from a region.

Collaboration


Dive into the Thomas Balenghien's collaboration.

Top Co-Authors

Avatar

Claire Garros

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Ignace Rakotoarivony

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Allene

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laëtitia Gardes

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Thierry Baldet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bruno Mathieu

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Annelise Tran

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Catherine Cetre-Sossah

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Renaud Lancelot

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge