Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Bligh Scott is active.

Publication


Featured researches published by Thomas Bligh Scott.


Journal of Hazardous Materials | 2012

Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology

Richard Crane; Thomas Bligh Scott

For the past 15 years, nanoscale metallic iron (nZVI) has been investigated as a new tool for the treatment of contaminated water and soil. The technology has reached commercial status in many countries worldwide, however is yet to gain universal acceptance. This review summarises our contemporary knowledge of nZVI aqueous corrosion, manufacture and deployment, along with methods to enhance particle reactivity, stability and subsurface mobility. Reasons for a lack of universal acceptance are also explored. Key factors include: concerns over the long-term fate, transformation and ecotoxicity of nZVI in environmental systems and, a lack of comparable studies for different nZVI materials and deployment strategies. It is highlighted that few investigations to date have examined systems directly analogous to the chemistry, biology and architecture of the terrestrial environment. Such emerging studies have highlighted new concerns, including the prospect for remobilisation of heavy metals and radionuclides over extended periods. The fundamental importance of being able to accurately predict the long-term physical, chemical and biological fate of contaminated sites following nZVI treatment is emphasised and, as part of this, a universal empirical testing framework for nZVI is suggested.


Journal of Hazardous Materials | 2010

The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent

Michelle Dickinson; Thomas Bligh Scott

Zero-valent iron nanoparticles (INP) were investigated as a remediation strategy for a uranium-contaminated waste effluent from AWE, Aldermaston. Nanoparticles were introduced to the effluent, under both oxic and anoxic conditions, and allowed to react for a 28-d period during which the liquid and nanoparticle solids were periodically sampled. Analysis of the solution indicated that under both conditions U was removed to <1.5% of its initial concentration within 1h of introduction and remained at similar concentrations until approximately 48 h. A rapid release of Fe into solution was also recorded during this initial period; attributed to the limited partial dissolution of the INP. XPS analyses of the reacted nanoparticulate solids between 1 and 48 h showed an increased Fe(III):Fe(II) ratio, consistent with the detection of iron oxidation products (akaganeite and magnetite) by XRD and FIB. XPS analysis also recorded uranium on the recovered particulates indicating the chemical reduction of U(VI) to U(IV) within 1h. Following the initial retention period U-dissolution of U was recorded from 48 h, and attributed to reoxidation. The efficient uptake and retention of U on the INP for periods up to 48 h provide proof that INP may be effectively used for the remediation of complex U-contaminated effluents.


Water Research | 2011

Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water

Richard Crane; Michelle Dickinson; Ioana-Carmen Popescu; Thomas Bligh Scott

The current work presents a comparative and site specific study for the application of zero-valent iron nanoparticles (nano-Fe(0)) and magnetite nanoparticles (nano-Fe(3)O(4)) for the removal of U from carbonate-rich environmental water taken from the Lişava valley, Banat, Romania. Nanoparticles were introduced to the Lişava water under surface and deep aquifer oxygen conditions, with a U(VI)-only solution studied as a simple system comparator. Thebatch systems were analysed over an 84 day reaction period, during which the liquid and nanoparticulate solids were periodically sampled to determine chemical evolution of the solutions and particulates. Results indicated that U was removed by all nano-Fe(0) systems to <10 μg L(-1) (>98% removal) within 2 h of reaction, below EPA and WHO specified drinking water regulations. Similar U concentrations were maintained until approximately 48 h. X-ray photoelectron spectroscopy analysis of the nanoparticulate solids confirmed partial chemical reduction of U(VI) to U(IV) concurrent with Fe oxidation. In contrast, nano-Fe(3)O(4) failed to achieve >20% U removal from the Lişava water. Whilst the outer surface of both the nano-Fe(0) and nano-Fe(3)O(4) was initially near-stoichiometric magnetite, the greater performance exhibited by nano-Fe(0) is attributed to the presence of a Fe(0) core for enhanced aqueous reactivity, sufficient to achieve near-total removal of aqueous U despite any competing reactions within the carbonate-rich Lişava water. Over extended reaction periods (>1 week) the chemically simple U(VI)-only solution treated using nano-Fe(0) exhibited near-complete and maintained U removal. In contrast, appreciable U re-release was recorded for the Lişava water solutions treated using nano-Fe(0). This behaviour is attributed to the high stability of U in the presence of ligands (predominantly carbonate) within the Lişava water, inducing preferential re-release to the aqueous phase during nano-Fe(0) corrosion. The current study therefore provides clear evidence for the removal and immobilisation of U from environmental waters using Fe-based nanoparticles. As a contrast to previous experimental studies reporting impressive figures for U removal and retention from simple aqueous systems, the present work demonstrates both nanomaterials as ineffective on timescales >1 week. Consequently further research is required to develop nanomaterials that exhibit greater reactivity and extended retention of inorganic contaminants in chemically complex environmental waters.


Journal of Hazardous Materials | 2011

Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants.

Thomas Bligh Scott; Ioana-Carmen Popescu; Richard Crane; Chicgoua Noubactep

Although contaminant removal from water using zero-valent iron nanoparticles (INP) has been investigated for a wide array of chemical pollutants, the majority of studies to date have only examined the reaction of INP in simple single-contaminant systems. Such systems fail to reproduce the complexity of environmental waters and consequently fail as environmental analogues due to numerous competitive reactions not being considered. Consequently there is a high demand for multi-elemental and site-specific studies to advance the design of INP treatment infrastructure. Here INP are investigated using batch reactor systems over a range of pH for the treatment of water containing multi-element contaminants specifically U, Cu, Cr and Mo, selected to provide site-specific analogues for leachants collected from the Lişava mine, near Oraviţa in South West Romania. Concurrently, a U-only solution was also analysed as a single-system for comparison. Results confirmed the suitability of nano-Fe(0) as a highly efficient reactive material for the aqueous removal of Cr(IV), Cu(II) and U(VI) over a range of pH applicable to environmental waters. Insufficient Mo(VI) removal was observed at pH >5.7, suggesting that further studies were necessary to successfully deploy INP for the treatment of geochemically complex mine water effluents. Results also indicated that uranium removal in the multi-element system was less than for the comparator containing only uranium.


Advanced Materials | 2014

Nano-Composites for Water Remediation: A Review

Sarah J Tesh; Thomas Bligh Scott

As global populations continue to increase, the pressure on water supplies will inevitably intensify. Consequently the international need for more efficient and cost effective water remediation technologies will also rise. The introduction of nano-technology into the industry may represent a significant advancement and zero-valent iron nano-particles (INPs) have been thoroughly studied for potential remediation applications. However, the application of water dispersed INP suspensions is limited and somewhat contentious on the grounds of safety, whilst INP reaction mechanisms, transport properties and ecotoxicity are areas still under investigation. Theoretically, the development of nano-composites containing INPs to overcome these issues provides the logical next step for developing nano-materials that are better suited to wide application across the water industry. This review provides an overview of the range of static, bulk nano-composites containing INPs being developed, whilst highlighting the limitations of individual solutions, overall classes of technology, and lack of comparative testing for nano-composites. The review discusses what further developments are needed to optimize nano-composite water remediation systems to subsequently achieve commercial maturity.


Chemosphere | 2010

Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions

Robert J. Barnes; Olga Riba; Murray N. Gardner; Thomas Bligh Scott; Simon A. Jackman; Ian P. Thompson

The use of nano-scale particles as a means of environmental remediation still provides a comparatively novel approach for the treatment of contaminated waters. The current study compares the reactivity of micro-scale Fe, nano-scale Fe and nano-scale Ni/Fe (nickel/iron) particles specifically for dechlorination of solutions containing 350 mg L(-1) of TCE (concentration measured at a contaminated site in Derbyshire, UK). The results indicated that employing 1 g L(-1) of reactive material for dechlorination in the monometallic form (both micro- and nano-scale) exhibited very little reduction capability compared with the bimetallic Ni/Fe nano-scale particles, containing 28.9% Ni (in molar), which achieved complete dechlorination of the TCE in solution within 576 h. Experiments were also performed to determine the optimum bimetallic composition of the Ni/Fe particles for TCE reduction. This revealed that 3.2% Ni was the optimum Ni/Fe molar ratio for both maximum dehalogenation performance and minimum release of Ni into solution. Using particles of the most effective bimetallic composition, experiments were carried out to determine the concentration required for optimal TCE reduction. Over the range of nano-scale particle concentrations tested (0.1-9 g L(-1)), reduction rates of TCE increased with greater TCE:nano-scale particle ratios. However, a concentration range of 1-3 g L(-1) was selected as the most appropriate for site remediation, since more concentrated solutions demonstrated only small increases in rates of reaction. Finally, in order to test the long term performance and reactivity of the 3.2% Ni/Fe bimetallic nano-scale particles, weekly spikes of 350 mg L(-1) TCE were injected into a 3 g L(-1) nano-scale particle batch reactor. Results showed that the bimetallic nano-scale particles had the ability to reduce 1750 mg L(-1) TCE and remained active for at least 13 weeks.


Journal of Hazardous Materials | 2009

Exploring the influence of operational parameters on the reactivity of elemental iron materials

Chicgoua Noubactep; Tobias Licha; Thomas Bligh Scott; Mamadou Fall; Martin Sauter

In an attempt to characterize material intrinsic reactivity, iron dissolution from elemental iron materials (Fe(0)) was investigated under various experimental conditions in batch tests. Dissolution experiments were performed in a dilute solution of ethylenediaminetetraacetate (Na(2)-EDTA - 2mM). The dissolution kinetics of 18 Fe(0) materials were investigated. The effects of individual operational parameters were assessed using selected materials. The effects of available reactive sites [Fe(0) particle size (<or=2.0mm) and metal loading (2-64 g L(-1))], mixing type (air bubbling, shaking), shaking intensity (0-250 min(-1)), and Fe(0) pre-treatment (ascorbate, HCl and EDTA washing) were investigated. The data were analysed using the initial dissolution rate (k(EDTA)). The results show increased iron dissolution with increasing reactive sites (decreasing particle size or increasing metal loading), and increasing mixing speed. Air bubbling and material pre-treatment also lead to increased iron dissolution. The main output of this work is that available results are hardly comparable as they were achieved under very different experimental conditions. A unified experimental procedure for the investigation of processes in Fe(0)/H(2)O systems is suitable. Alternatively, a parameter (tau(EDTA)) is introduced which could routinely used to characterize Fe(0) reactivity under given experimental conditions.


Journal of Environmental Radioactivity | 2015

The use of unmanned aerial systems for the mapping of legacy uranium mines

P. Martin; Oliver D Payton; John S Fardoulis; David A. Richards; Thomas Bligh Scott

Historical mining of uranium mineral veins within Cornwall, England, has resulted in a significant amount of legacy radiological contamination spread across numerous long disused mining sites. Factors including the poorly documented and aged condition of these sites as well as the highly localised nature of radioactivity limit the success of traditional survey methods. A newly developed terrain-independent unmanned aerial system [UAS] carrying an integrated gamma radiation mapping unit was used for the radiological characterisation of a single legacy mining site. Using this instrument to produce high-spatial-resolution maps, it was possible to determine the radiologically contaminated land areas and to rapidly identify and quantify the degree of contamination and its isotopic nature. The instrument was demonstrated to be a viable tool for the characterisation of similar sites worldwide.


Nanotechnology | 2007

Growth of self-assembled ZnO nanoleaf from aqueous solution by pulsed laser ablation

Li Yang; Paul W May; Lei Yin; Thomas Bligh Scott

Zinc oxide ‘nanoleaf’ structures have been synthesized at room temperature and pressure using the novel technique of pulsed laser ablation (Nd:YAG 532 nm) of a zinc target in an aqueous solution of sodium dodecyl sulfate (SDS). Transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), photoluminescence spectroscopy and UV–visible spectroscopy were used to study the morphology, nanostructure and optical properties of these ZnO nanostructures. The growth mechanism appears to involve an increase of the structural complexity from zero-dimensional nanoparticles to one-dimensional nanorods, and then broadening of these into two-dimensional ‘nanoleaf’ structures. Variations are discussed in terms of differences in the concentration of SDS and the laser ablation time. (Some figures in this article are in colour only in the electronic version)


Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 2005

The extraction of uranium from groundwaters on iron surfaces

Thomas Bligh Scott; Geoffrey C. Allen; Peter J Heard; Ac Lewis; Darren F. Lee

The observation of uranium remediation from groundwater onto mild-steel surfaces is reported. Mechanisms for uranium immobilization are proposed.

Collaboration


Dive into the Thomas Bligh Scott's collaboration.

Top Co-Authors

Avatar

P. Martin

University of Bristol

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge