Thomas Bloom
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Bloom.
Transactions of the American Mathematical Society | 2008
Thomas Bloom
Let E be a compact subset of C N and w > 0 an admissible weight function on E. To (E,ω) we associate a canonical circular set Z C We obtain precise relations between the weighted pluricomplex Green function and weighted equilibrium measure of (E, w) and the pluricomplex Green function and equilibrium measure of Z. These results, combined with an appropriate form of the Bernstein-Markov inequality, are used to obtain asymptotic formulas for the leading coefficients of orthonormal polynomials with respect to certain exponentially decreasing weights in R N .
Constructive Approximation | 1989
Thomas Bloom
LetAdj be a triangular array in a compact setX⊂Cn. Forf analytic in a neighborhood ofX, letLd(f) denote the Lagrange interpolant tof at staged of the array. In the caseX is locally regular, we construct a continuous functionϕ satisfying the complex Monge-Ampère equation onCn−X, such that iff is analytic onϕ≤R forR>1 then, for someB>0, we have ∥Ld(f)−f∥x≤B exp(−d logR. In particular, sinceϕ≤1 onX, iff is analytic onϕ≤1, then limd ∥Ld(f)−f∥x=0.
Mathematics of Computation | 1997
Thomas Bloom; Jean-Paul Calvi
Let {S t } be a sequence of interpolation schemes in R n of degree d (i.e. for each S t one has unique interpolation by a polynomial of total degree < d) and total order ≤ l. Suppose that the points of S t tend to 0 ∈ R n as t → ∞ and the Lagrange-Hermite interpolants, Hs t , satisfy lim t→ ∞ HS t (x α ) = 0 for all monomials x α with |α| = d + 1. Theorem: lim t→ ∞ HS t (f) = T d (f) for all functions f of class C l-1 in a neighborhood of 0. (Here T d (f) denotes the Taylor series of f at 0 to order d.) Specific examples are given to show the optimality of this result.
Journal of Approximation Theory | 1988
Thomas Bloom
On obtient des resultats precis concernant les valeurs asymptotiques des fonctions de Lebesgue et des constantes de Lebesgue pour des points egalement espaces dans le simplexe
Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 1999
Thomas Bloom; Jean-Paul Calvi
Resume On demontre des resultats concernant le diametre transfini des compact dans ℂn. Ces resultats mettent en lumiere la relation etroite entre le diametre transfini et des objects fondamentaux de la theorie du pluripotentiel.
Inventiones Mathematicae | 1977
Thomas Bloom; Ian D. Graham
Journal of Differential Geometry | 1977
Thomas Bloom; Ian D. Graham
Mathematical Research Letters | 2007
Thomas Bloom; Bernard Shiffman
International Mathematics Research Notices | 2005
Thomas Bloom
American Journal of Mathematics | 2003
Thomas Bloom; Norman Levenberg