Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Boettger is active.

Publication


Featured researches published by Thomas Boettger.


Journal of Clinical Investigation | 2009

Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster

Thomas Boettger; Nadine Beetz; Sawa Kostin; Johanna Schneider; Marcus Krüger; Lutz Hein; Thomas Braun

VSMCs respond to changes in the local environment by adjusting their phenotype from contractile to synthetic, a phenomenon known as phenotypic modulation or switching. Failure of VSMCs to acquire and maintain the contractile phenotype plays a key role in a number of major human diseases, including arteriosclerosis. Although several regulatory circuits that control differentiation of SMCs have been identified, the decisive mechanisms that govern phenotypic modulation remain unknown. Here, we demonstrate that the mouse miR-143/145 cluster, expression of which is confined to SMCs during development, is required for VSMC acquisition of the contractile phenotype. VSMCs from miR-143/145-deficient mice were locked in the synthetic state, which incapacitated their contractile abilities and favored neointimal lesion development. Unbiased high-throughput, quantitative, mass spectrometry-based proteomics using reference mice labeled with stable isotopes allowed identification of miR-143/145 targets; these included angiotensin-converting enzyme (ACE), which might affect both the synthetic phenotype and contractile functions of VSMCs. Pharmacological inhibition of either ACE or the AT1 receptor partially reversed vascular dysfunction and normalized gene expression in miR-143/145-deficient mice. We conclude that manipulation of miR-143/145 expression may offer a new approach for influencing vascular repair and attenuating arteriosclerotic pathogenesis.


Circulation Research | 2008

Sirt7 Increases Stress Resistance of Cardiomyocytes and Prevents Apoptosis and Inflammatory Cardiomyopathy in Mice

Olesya Vakhrusheva; Christian Smolka; Praveen Gajawada; Sawa Kostin; Thomas Boettger; Thomas Kubin; Thomas Braun; Eva Bober

Sirt7 is a member of the mammalian sirtuin family consisting of 7 genes, Sirt1 to Sirt7, which all share a homology to the founding family member, the yeast Sir2 gene. Most sirtuins are supposed to act as histone/protein deacetylases, which use oxidized NAD in a sirtuin-specific, 2-step deacetylation reaction. To begin to decipher the biological role of Sirt7, we inactivated the Sirt7 gene in mice. Sirt7-deficient animals undergo a reduction in mean and maximum lifespans and develop heart hypertrophy and inflammatory cardiomyopathy. Sirt7 mutant hearts are also characterized by an extensive fibrosis, which leads to a 3-fold increase in collagen III accumulation. We found that Sirt7 interacts with p53 and efficiently deacetylates p53 in vitro, which corresponds to hyperacetylation of p53 in vivo and an increased rate of apoptosis in the myocardium of mutant mice. Sirt7-deficient primary cardiomyocytes show a ≈200% increase in basal apoptosis and a significantly diminished resistance to oxidative and genotoxic stress suggesting a critical role of Sirt7 in the regulation of stress responses and cell death in the heart. We propose that enhanced activation of p53 by lack of Sirt7-mediated deacetylation contributes to the heart phenotype of Sirt7 mutant mice.


Current Biology | 1999

FGF8 functions in the specification of the right body side of the chick

Thomas Boettger; Lars Wittler; Michael Kessel

Left-right asymmetry in vertebrate embryos is first recognisable using molecular markers that encode secreted proteins or transcription factors. The asymmetry becomes morphologically obvious in the turning of the embryo and in the development of the heart, the gut and other visceral organs. In the chick embryo, a signalling pathway for the specification of the left body side was demonstrated. Here, Sonic hedgehog (Shh) protein is the first asymmetric signal identified in the node [1] [2]. Further downstream in this pathway are the left-specific genes nodal, lefty-1, lefty-2 and Pitx2 [1] [3] [4] [5]. On the right body side, a function of the activin pathway is indicated by the right-sided expression of cActRIIa [1] [6]. We detected that another key molecule in vertebrate development, fibroblast growth factor 8 (FGF8) [7] [8], is expressed asymmetrically on the right side of the posterior node. We demonstrate that transcription of FGF8 is induced by activin and the FGF8 protein inhibits the expression of nodal and Pitx2 and leads to expression of the chicken snail related gene (cSnR) [9]. Left-sided application of FGF8 randomises the direction of heart looping.


Nature | 2016

FOXO1 couples metabolic activity and growth state in the vascular endothelium.

Kerstin Wilhelm; Katharina Happel; Guy Eelen; Sandra Schoors; Mark F. Oellerich; Radiance Lim; Barbara Zimmermann; Irene M. Aspalter; Claudio A. Franco; Thomas Boettger; Thomas Braun; Marcus Fruttiger; Klaus Rajewsky; Charles Keller; Jens C. Brüning; Holger Gerhardt; Peter Carmeliet; Michael Potente

Endothelial cells (ECs) are plastic cells that can switch between growth states with different bioenergetic and biosynthetic requirements. Although quiescent in most healthy tissues, ECs divide and migrate rapidly upon proangiogenic stimulation. Adjusting endothelial metabolism to the growth state is central to normal vessel growth and function, yet it is poorly understood at the molecular level. Here we report that the forkhead box O (FOXO) transcription factor FOXO1 is an essential regulator of vascular growth that couples metabolic and proliferative activities in ECs. Endothelial-restricted deletion of FOXO1 in mice induces a profound increase in EC proliferation that interferes with coordinated sprouting, thereby causing hyperplasia and vessel enlargement. Conversely, forced expression of FOXO1 restricts vascular expansion and leads to vessel thinning and hypobranching. We find that FOXO1 acts as a gatekeeper of endothelial quiescence, which decelerates metabolic activity by reducing glycolysis and mitochondrial respiration. Mechanistically, FOXO1 suppresses signalling by MYC (also known as c-MYC), a powerful driver of anabolic metabolism and growth. MYC ablation impairs glycolysis, mitochondrial function and proliferation of ECs while its EC-specific overexpression fuels these processes. Moreover, restoration of MYC signalling in FOXO1-overexpressing endothelium normalizes metabolic activity and branching behaviour. Our findings identify FOXO1 as a critical rheostat of vascular expansion and define the FOXO1–MYC transcriptional network as a novel metabolic checkpoint during endothelial growth and proliferation.


Journal of Biological Chemistry | 2010

Blockade of Dendritic Cell Development by Bacterial Fermentation Products Butyrate and Propionate through a Transporter (Slc5a8)-dependent Inhibition of Histone Deacetylases

Nagendra Singh; Muthusamy Thangaraju; Puttur D. Prasad; Pamela M. Martin; Nevin A. Lambert; Thomas Boettger; Stefan Offermanns; Vadivel Ganapathy

Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na+-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8−/− and Gpr109a−/− mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.


PLOS Genetics | 2013

miR-1/133a Clusters Cooperatively Specify the Cardiomyogenic Lineage by Adjustment of Myocardin Levels during Embryonic Heart Development

Katharina Wystub; Johannes Besser; Angela Bachmann; Thomas Boettger; Thomas Braun

miRNAs are small RNAs directing many developmental processes by posttranscriptional regulation of protein-coding genes. We uncovered a new role for miR-1-1/133a-2 and miR-1-2/133a-1 clusters in the specification of embryonic cardiomyocytes allowing transition from an immature state characterized by expression of smooth muscle (SM) genes to a more mature fetal phenotype. Concomitant knockout of miR-1-1/133a-2 and miR-1-2/133a-1 released suppression of the transcriptional co-activator myocardin, a major regulator of SM gene expression, but not of its binding partner SRF. Overexpression of myocardin in the embryonic heart essentially recapitulated the miR-1/133a mutant phenotype at the molecular level, arresting embryonic cardiomyocytes in an immature state. Interestingly, the majority of postulated miR-1/133a targets was not altered in double mutant mice, indicating that the ability of miR-1/133a to suppress target molecules strongly depends on the cellular context. Finally, we show that myocardin positively regulates expression of miR-1/133a, thus constituting a negative feedback loop that is essential for early cardiac development.


Circulation Research | 2012

A New Level of Complexity: The Role of MicroRNAs in Cardiovascular Development

Thomas Boettger; Thomas Braun

The discovery of the regulatory role of noncoding RNAs, and micro (mi)RNAs in particular, has added a new layer of complexity to our understanding of cardiovascular development. miRNAs regulate and modulate various steps of cardiovascular morphogenesis, cell proliferation, differentiation, and phenotype modulation. miRNAs simultaneously regulate multiple targets, and many miRNAs can bind to the same target, allowing for a complex pattern of regulation of gene expression. miRNA families are continuously added during evolution paralleling the increased complexity of the cardiovascular system in vertebrates compared with invertebrates. Several lines of evidence suggest that the appearance of miRNAs is at least in part responsible for the formation of complex organ systems and stable regulatory mechanisms in vertebrates. We review the current understanding of miRNAs during cardiovascular development. Further progress in this area will help to decipher quantitative changes in gene expression that provide robustness to cellular phenotypes and regulatory options to diseases processes. miRNAs might also provide clues to better understand congenital heart defects, which are the most common birth defects in human newborns.


Molecular & Cellular Proteomics | 2012

On Marathons and Sprints: An Integrated Quantitative Proteomics and Transcriptomics Analysis of Differences Between Slow and Fast Muscle Fibers

Hannes C. A. Drexler; Aaron Ruhs; Anne Konzer; Luca Mendler; Mark Bruckskotten; Mario Looso; Stefan Günther; Thomas Boettger; Marcus Krüger; Thomas Braun

Skeletal muscle tissue contains slow as well as fast twitch muscle fibers that possess different metabolic and contractile properties. Although the distribution of individual proteins in fast and slow fibers has been investigated extensively, a comprehensive proteomic analysis, which is key for any systems biology approach to muscle tissues, is missing. Here, we compared the global protein levels and gene expression profiles of the predominantly slow soleus and fast extensor digitorum longus muscles using the principle of in vivo stable isotope labeling with amino acids based on a fully lysine-6 labeled SILAC-mouse. We identified 551 proteins with significant quantitative differences between slow soleus and fast extensor digitorum longus fibers out of >2000 quantified proteins, which greatly extends the repertoire of proteins differentially regulated between both muscle types. Most of the differentially regulated proteins mediate cellular contraction, ion homeostasis, glycolysis, and oxidation, which reflect the major functional differences between both muscle types. Comparison of proteomics and transcriptomics data uncovered the existence of fiber-type specific posttranscriptional regulatory mechanisms resulting in differential accumulation of Myosin-8 and α-protein kinase 3 proteins and mRNAs among others. Phosphoproteome analysis of soleus and extensor digitorum longus muscles identified 2573 phosphosites on 973 proteins including 1040 novel phosphosites. The in vivo stable isotope labeling with amino acids-mouse approach used in our study provides a comprehensive view into the protein networks that direct fiber-type specific functions and allows a detailed dissection of the molecular composition of slow and fast muscle tissues with unprecedented resolution.


Circulation Research | 2013

AMP-Activated Protein Kinase Regulates Endothelial Cell Angiotensin-Converting Enzyme Expression via p53 and the Post-Transcriptional Regulation of microRNA-143/145

Karin Kohlstedt; Caroline Trouvain; Thomas Boettger; Lei Shi; Beate Fisslthaler; Ingrid Fleming

Rationale: High–angiotensin-converting enzyme (ACE)-levels are associated with cardiovascular disease, but little is known about the regulation of its expression. Objective: To assess the molecular mechanisms regulating endothelial ACE expression focusing on the role of the AMP-activated protein kinase (AMPK) and miR-143/145. Methods and Results: Shear stress decreased ACE expression in cultured endothelial cells, an effect prevented by downregulating AMPK&agr;2 but not AMPK&agr;1. AMPK&agr;2−/− mice expressed higher ACE levels than wild-type littermates resulting in impaired hindlimb vasodilatation to the ACE substrate, bradykinin. The latter response was also evident in animals lacking the AMPK&agr;2 subunit only in endothelial cells. In cultured endothelial cells, miR-143/145 levels were increased by shear stress in an AMPK&agr;2-dependent manner, and miR-143/145 overexpression decreased ACE expression. The effect of shear stress was unrelated to an increase in miR-143/145 promoter activity and transcription but could be attributed to post-transcriptional regulation of precursor–miR-143/145 by AMPK&agr;2. The AMPK substrate, p53, can enhance the post-transcriptional processing of several microRNAs, including miR-143/145. We found that shear stress elicited the AMPK&agr;2-dependent phosphorylation of p53 (on Ser15), and that p53 downregulation prevented the shear stress–induced decrease in ACE expression. Streptozotocin–induced diabetes mellitus in mice was studied as a pathophysiological model of altered AMPK activity. Diabetes mellitus increased tissue phosphorylation of the AMPK substrates, p53 and acetyl-coenzyme A carboxylase, changes that correlated with increased miR-143/145 levels and decreased ACE expression. Conclusions: AMPK&agr;2 suppresses endothelial ACE expression via the phosphorylation of p53 and upregulation of miR-143/145. Post-transcriptional regulation of miR-143/145 may contribute to the vascular complications associated with diabetes mellitus.


Journal of Biological Chemistry | 2008

Lactaturia and Loss of Sodium-dependent Lactate Uptake in the Colon of SLC5A8-deficient Mice

Henning Frank; Nicole Gröger; Martin Diener; Christoph Becker; Thomas Braun; Thomas Boettger

SLC5A8 is a member of the sodium/glucose cotransporter family. It has been proposed that SLC5A8 might act as an apical iodide transporter in the thyroid follicular cells or as a transporter of short chain monocarboxylates. We have directly addressed the functional role of SLC5A8 in vivo by generation of SLC5A8 mutant mice. We found that SLC5A8 is responsible for the re-absorption of lactate at the apical membrane of the kidney proximal tubules and of serous salivary gland ducts. In addition, SLC5A8 mediated the uptake of lactate into colonocytes under physiological conditions. We did not find any evidence of SLC5A8 being essential for the apical iodide transport in the thyroid gland, even if the ion-cotransporter SLC26A4, causing the human Pendred syndrome, is missing. Because SLC5A8 is transcriptionally silenced in many tumors, it has been proposed that SLC5A8-mediated transport of butyrate suppresses tumor formation. Treatment of Slc5a8-/- mice with carcinogens and breeding to the Apcmin mouse line did not reveal a higher incidence of tumor formation. We conclude that SLC5A8 is instrumental in preventing lactaturia and loss of sodium-dependent uptake of lactate in the colon but does not have any apparent role in the prevention of tumor formation and growth.

Collaboration


Dive into the Thomas Boettger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donghai Wen

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steven C. Sansom

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huaqing Li

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paige C. Warner

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ryan J. Cornelius

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yang Yuan

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge