Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Braunbeck is active.

Publication


Featured researches published by Thomas Braunbeck.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2011

Low-dose effects and biphasic effect profiles: is trenbolone a genotoxicant?

Melanie Boettcher; Thomas Kosmehl; Thomas Braunbeck

Over the last years, extensive research has documented endocrine-disrupting activities for a significant number of substances including, among others, hormones, pharmaceuticals, pesticides and surfactants. Nonetheless, for most endocrine disruptors, toxicological profiles are still incomplete or even lacking. A systematic review has shown that a number of endocrine disruptors with steroid-modulating effects may also exert mutagenic and carcinogenic activities. For trenbolone, an androgenic compound, there is controversy about its genotoxic properties in the literature, apparently with a strong dependence on the choice of the test system. Since fish and other aquatic animals are at risk of exposure to run-offs from cattle feedlots or sewage-discharge sites containing trenbolone, potential consequences to aquatic ecosystems need to be assessed. To this end, the potential genotoxic hazard of trenbolone was tested in vitro in the permanent rainbow trout-liver cell-line RTL-W1, as well as in primary cell cultures derived from zebrafish (Danio rerio) embryos after in vivo exposure. In either test system, a potential genotoxic hazard characterized by biphasic dose-response curves could be documented even at exposure concentrations of 30μg/L. These results thus confirm the conclusion that the steroid trenbolone may act as a genotoxic substance.


Aquatic Toxicology | 2010

The Fish Embryo Toxicity Test as an Animal Alternative Method in Hazard and Risk Assessment and Scientific Research

Michelle R. Embry; Scott E. Belanger; Thomas Braunbeck; Malyka Galay-Burgos; Marlies Halder; David E. Hinton; Marc Léonard; Adam Lillicrap; Teresa J. Norberg-King; Graham Whale

Animal alternatives research has historically focused on human safety assessments and has only recently been extended to environmental testing. This is particularly for those assays that involve the use of fish. A number of alternatives are being pursued by the scientific community including the fish embryo toxicity (FET) test, a proposed replacement alternative to the acute fish test. Discussion of the FET methodology and its application in environmental assessments on a global level was needed. With this emerging issue in mind, the ILSI Health and Environmental Sciences Institute (HESI) and the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) held an International Workshop on the Application of the Fish Embryo Test as an Animal Alternative Method in Hazard and Risk Assessment and Scientific Research in March, 2008. The workshop included approximately 40 scientists and regulators representing government, industry, academia, and non-governmental organizations from North America, Europe, and Asia. The goal was to review the state of the science regarding the investigation of fish embryonic tests, pain and distress in fish, emerging approaches utilizing fish embryos, and the use of fish embryo toxicity test data in various types of environmental assessments (e.g., hazard, risk, effluent, and classification and labeling of chemicals). Some specific key outcomes included agreement that risk assessors need fish data for decision-making, that extending the FET to include eluethereombryos was desirable, that relevant endpoints are being used, and that additional endpoints could facilitate additional uses beyond acute toxicity testing. The FET was, however, not yet considered validated sensu OECD. An important action step will be to provide guidance on how all fish tests can be used to assess chemical hazard and to harmonize the diverse terminology used in test guidelines adopted over the past decades. Use of the FET in context of effluent assessments was considered and it is not known if fish embryos are sufficiently sensitive for consideration as a surrogate to the sub-chronic 7-day larval fish growth and survival test used in the United States, for example. Addressing these needs by via workshops, research, and additional data reviews were identified for future action by scientists and regulators.


Reproductive Toxicology | 2012

Zebrafish embryos as an alternative to animal experiments. A commentary on the definition of the onset of protected life stages in animal welfare regulations

Uwe Strähle; Stefan Scholz; Robert Geisler; Petra Greiner; Henner Hollert; Sepand Rastegar; Axel Schumacher; Ingrid W.T. Selderslaghs; Carsten Weiss; Hilda Witters; Thomas Braunbeck

Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120 h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120 h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120 h after fertilization onwards.


Aquatic Toxicology | 2003

Effects of 17a-ethinylestradiol on the expression of three estrogen-responsive genes and cellular ultrastructure of liver and testes in male zebrafish

Markus Islinger; Daniel Willimski; Alfred Völkl; Thomas Braunbeck

In order to monitor the influence of estrogenic compounds on the reproductive physiology of fish, molecular markers for zebrafish vitellogenin, estrogen receptor and ZP2 were developed. For this purpose, sequence information about the zebrafish estrogen receptor and vitellogenin had to be obtained. By means of RT-PCR, a sequence fragment of the zebrafish estrogen receptor alpha was cloned and sequenced. Continuous cDNAs of two zebrafish vitellogenin-like gene products (zfvg1 and zfvg3) were constructed by the help of expressed sequence tags of zebrafish and completely sequenced. The sequences of the estrogen receptor and of the vitellogenins showed significant similarities to corresponding cDNAs of other fish species. Expression of these gene products was measured following exposure to 17alpha-ethinylestradiol and compared with histological endpoints. RT-PCR was used as a semiquantitative technique to record gene expression in adult male zebrafish, which were exposed to 17alpha-ethinylestradiol in time-and dose-response experiments. As for time-dependent expression, all hepatic genes investigated were expressed at considerable amounts from 24 h after onset of exposure to 50 ng/l 17alpha-ethinylestradiol to the end of experiment (17 days). In testes, expression of the estrogen receptor- as well as ZP2-mRNA remained unchanged for the entire experiment, except for the individuals exposed for 17 days, which displayed elevated expression levels of ZP2. In the dose-response experiment, male zebrafish were exposed to 17alpha-ethinylestradiol in concentrations from 0.25-85 ng/l for 4 and 21 days. LOECs for vitellogenin as well as estrogen receptor alpha expression were found to be 2.5 ng/l already after 4 d of exposure. Extension of the exposure time to 21 days resulted in enhanced transcription of vitellogenin-mRNAs at 2.5 ng/l 17alpha-ethinylestradiol, whereas the detection limit could not be lowered. In contrast, in testes no induction of both ZP2 as well as estrogen receptor expression was detected at any concentration tested. To examine estrogen-caused alterations at the ultrastructural level, liver and testes of males exposed to 25 ng/l 17alpha-ethinylestradiol were analysed. Male livers responded with a feminisation reflected by the proliferation of rough endoplasmatic reticulum and Golgi apparatus typical of female hepatocytes during vitellogenesis. However, in testes no signs of feminisation were detectable; rather, destructive phenomena like phagocytosis of sperm cells by Sertoli cells were observed. Thus, in sexually differentiated males no reorganisation of the gonadal tissue towards an ovary could be definitely detected at any level investigated.


Environmental Toxicology and Chemistry | 2005

Description and initial evaluation of a Xenopus metamorphosis assay for detection of thyroid system‐disrupting activities of environmental compounds

Robert Opitz; Thomas Braunbeck; Christian Bögi; Daniel B. Pickford; Gerrit Nentwig; Jörg Oehlmann; Osamu Tooi; Ilka Lutz; Werner Kloas

A need is recognized for the development and evaluation of bioassays for detection of thyroid system-disrupting compounds. The issue of testing for thyroid disruption can be addressed by exploiting amphibian metamorphosis as a biological model. In the present study, a test protocol for a Xenopus metamorphosis assay (XEMA) was developed and its interlaboratory transferability was evaluated in an informal ring test with six laboratories participating. In the XEMA test, exposure of Xenopus laevis tadpoles was initiated at stages 48 to 50 and continued for 28 d. Development and growth of tadpoles were assessed by means of developmental stage and whole body length determinations, respectively. For initial test protocol evaluation, thyroxine (T4), and propylthiouracil (PTU) were used as positive controls for thyroid system-modulating activity, and ethylenethiourea (ETU) was used as a test compound. Exposure of tadpoles to 1 microg/L T4 produced a significant acceleration of metamorphosis whereas PTU concentrations of 75 and 100 mg/L completely inhibited metamorphosis. Five different ETU concentrations (5, 10, 25, 50, and 100 mg/L) were tested and a concentration-dependent inhibition of metamorphosis was observed. None of the compounds affected tadpole survival, and only PTU caused a slight retardation in tadpole growth. This study demonstrates that the XEMA test provides a sensitive, robust, and practical testing approach for detection of compounds with both agonistic and antagonistic effects on the thyroid system in Xenopus tadpoles.


Toxicology | 2011

Zebrafish (Danio rerio) embryos as a model for testing proteratogens

Stefan Weigt; Nicole Huebler; Ruben Strecker; Thomas Braunbeck; Thomas H. Broschard

Zebrafish embryos have been shown to be a useful model for the detection of direct acting teratogens. This communication presents a protocol for a 3-day in vitro zebrafish embryo teratogenicity assay and describes results obtained for 10 proteratogens: 2-acetylaminofluorene, benzo[a]pyrene, aflatoxin B(1), carbamazepine, phenytoin, trimethadione, cyclophosphamide, ifosfamide, tegafur and thio-TEPA. The selection of the test substances accounts for differences in structure, origin, metabolism and water solubility. Apart from 2-acetylaminofluorene, which mainly produces lethal effects, all proteratogens tested were teratogenic in zebrafish embryos exposed for 3 days. The test substances and/or the substance class produced characteristic patterns of fingerprint endpoints. Several substances produced effects that could be identified already at 1 dpf (days post fertilization), whereas the effects of others could only be identified unambiguously after hatching at ≥ 3 dpf. The LC₅₀ and EC₅₀ values were used to calculate the teratogenicity index (TI) for the different substances, and the EC₂₀ values were related to human plasma concentrations. Results lead to the conclusion that zebrafish embryos are able to activate proteratogenic substances without addition of an exogenous metabolic activation system. Moreover, the teratogenic effects were observed at concentrations relevant to human exposure data. Along with other findings, our results indicate that zebrafish embryos are a useful alternative method for traditional teratogenicity testing with mammalian species.


Ecotoxicology | 2002

Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the river Neckar.

Henner Hollert; Matthias Dürr; Helena Olsman; Krister Halldin; Bert van Bavel; Werner Brack; Mats Tysklind; Magnus Engwall; Thomas Braunbeck

To evaluate the sediment quality of selected sites in the catchment area of the River Neckar, an integrative assessment approach was used to assess the ecological hazard potential of dioxin-like sediment compounds. The approach is based on 7-ethoxyresorufin-O -deethylase (EROD) induction in embryonic chicken liver culture and comprehensive chemical analyses of polycyclic aromatic hydrocarbons (priority PAHs according to the US Environmental Protection Agency). The majority of the sediment extracts exhibited high potencies as EROD-inducers. In one sediment sample, which was influenced by a sewage treatment plant, a very high concentration of 930 ng bioassay 2,3,7,8-tetrachlorodibenzo-p -dioxin (TCDD) equivalents (bio-TEQs )/g organic carbon could be determined. However, in none of the samples, more than 6% of the EROD-inducing potency could be explained by the PAHs analyzed chemically. Thus, non-analyzed compounds with EROD-inducing potency were present in the extracts. A fractionation of sediment samples according to pH allowed to localize the major part of EROD-inducing compounds in the neutral fractions. However, a significant portion of the EROD induction could also be explained by the acidic fractions. Following the concept of the Sediment Quality Triad according to Chapman, in situ alterations of macrozoobenthos were examined. A comparison of the results predicted by the EROD assay and chemical analyses with alterations in situ , as measured by means of the saprobic index and the ecotoxicological index according to Carmargo, revealed a high ecological relevance of the results of bioassays and chemical analyses for major sites.


Environmental Toxicology and Chemistry | 2006

A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos

Thomas Kosmehl; A.V. Hallare; Georg Reifferscheid; Werner Manz; Thomas Braunbeck; Henner Hollert

Broad consensus exists that whole-sediment exposure protocols represent the most realistic scenario to simulate in situ exposure conditions. So far, however, several endpoints including genotoxicity in vertebrate-based systems could be tested only after transfer of particle-bound substances into the aqueous phase. The present study was carried out to develop a protocol for generating a suspension of single cells from sediment-exposed zebrafish embryos that is suitable for detecting particle-bound genotoxicity in the alkaline single cell gel electrophoresis (comet assay). In this solid-phase genotoxicity assay, a whole-body cell suspension derived from zebrafish embryos exposed to native (whole) sediments is assayed in the comet assay. Several chemical and mechanical isolation procedures were compared to optimize cell yield and minimize DNA damage by the method itself. If compared to collagenase isolation, mechanical cell dissociation gave less DNA damage; trypsinization resulted in similarly low DNA damage but significantly lower cell yield. In order to test the optimized protocol, effects of well-known genotoxicants (4-nitroquinoline-N-oxide, nitrofurantoin, hydrogen peroxide, benzo[a]pyrene) and of two sediments from the upper Rhine River (Germany) on zebrafish embryos were investigated. Results documented clear-cut genotoxicity for all four substances and for one of the two whole-sediment samples. An ultraviolet (UV) light exposure of whole embryos and primary cultures from embryos elucidated only minor effects for the whole embryos compared to the primary cells. Consequently, UV irradiation cannot be suggested as a positive control in intact zebrafish embryos. In conclusion, the newly developed sediment contact assay can be recommended for the detection of both single substances but also the bioavailable fraction of the total hazard potential of sediments.


Environmental Science and Pollution Research | 2008

Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine — a mass balance approach using in vitro methods and chemical analysis

Jan Wölz; Magnus Engwall; Sibylle Maletz; Helena Takner; Bert van Bavel; Ulrike Kammann; Martin Klempt; Roland Weber; Thomas Braunbeck; Henner Hollert

Background, aim, and scopeAs a consequence of flood events, runoff and remobilized sediments may cause an increase of ecotoxicologically relevant effects from contaminant reservoirs. Aquatic and terrestrial organisms as well as cattle and areas of settlement are exposed to dislocated contaminants during and after flood events. In this study, the impacts of two flood events triggered by intense rain at the rivers Neckar and Rhine (Southern Germany) were studied. Effects in correlation to flood flow were assessed at the river Neckar using samples collected at frequent intervals. River Rhine suspended particulate matter (SPM) was sampled over a longer period at normal flow and during a flood event. Three cell lines (H4L1.1c4, GPC.2D.Luc, RTL-W1) were used to compare Ah receptor agonist activity in different biotest systems. Multilayer fractionation was performed to identify causative compounds, focusing on persistent organic contaminants.Materials and methodsNative water and SPM of flood events were collected at the river Neckar and at the monitoring station (Rheinguetestation, Worms, Germany) of the river Rhine. Water samples were XAD-extracted. SPM were freeze-dried and Soxhlet-extracted using acetone and finally dissolved in dimethyl sulfoxide. Resulting crude extracts were analyzed for cytotoxicity with the neutral red assay. Aryl hydrocarbon receptor (AhR) agonist activity was measured in a set of biological test systems (DR-CALUX, GPC.2D, and ethoxyresorufin-O-deethylase (EROD) assay) and different cell lines. In addition, crude extracts were fractionated using a combined method of multilayer (sequence of acidified silica layers) and carbon fractionation. Fractions from the multilayer fractionation contained persistent organic compounds (polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and some polycyclic aromatic hydrocarbon (PAHs)); fractions from the carbon fractionation were separated into a PCDD/F and a PCB fraction. Dioxin-like activity of multilayer and carbon fractions was determined in the EROD assay and expressed as biological toxicity equivalency concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (bio-TEQs). The calculation of chemical equivalency concentrations (chem-TEQs) and comparison to bio-TEQ values allowed the determination of the contribution of the analyzed persistent compounds to the total biological effects measured.ResultsSoluble compounds in native and extracted water samples resulted in no or minor activity in the toxicity tests, respectively. Filter residues of native water caused increased AhR-mediated activity at the peak of the flood. Activities of SPM of the river Neckar correlated well with the flow rate indicating a flood-dependent increase of toxicity culminating at the peak of flow. River Rhine SPM showed a decrease of activity regarding an SPM sample of the flood event compared to a long-term sample. Excellent correlations with AhR agonistic activity were determined for DR-CALUX and EROD assay, while the GPC.2D assay did not correlate with both other biotests. The activity of persistent dioxin-like acting compounds in multilayer and carbon fractionated PCDD/F and PCB fractions was low if compared to corresponding crude extracts. The congener pattern of PCDD/F revealed that the contaminations mainly originated from products and productions of the chlorine and organochlorine industries.DiscussionNative and extracted water samples could be shown to contain little or no cytotoxic or AhR agonistic compounds. In contrast, particle-bound compounds were shown to be the relevant effect-causing fraction, as indicated by the activities of filter residues of native water and SPM. Compounds other than fractionated persistent PCBs and PCDD/Fs were more relevant to explain AhR-mediated activities of crude flood SPM at both rivers assessed. Biologically detected activities could at least in part be traced back to chemically analyzed and quantified compounds.ConclusionsThe calculation of the portion of persistent PCBs and PCDD/Fs in multilayer fractions causing the high inductions in the EROD assay in combination with chemical analysis provides a suitable tool to assess dioxin-like activity of persistent compounds in SPM sampled over the course of flood events. Depending on the catchment area and annual course of flood events, end points may either indicate an increase or a decrease of activity. In order to determine the ecological hazard potential of mobilized contaminants during flood events, the focus should be set on particle-bound pollutants. Furthermore, PCDD/Fs and PCBs, commonly expected to be the most relevant pollutants in river systems, could be shown to contribute only to a minor portion of the overall AhR-mediated activity. However, they might be most relevant for human exposure when considering persistence and bioaccumulation–biomagnification in the food chain.Recommendations and perspectivesAs a consequence of climate change, flood events will increase in frequency and intensity at least in some regions such as Central Europe. Thus, it is crucial to identify the potential hazard of (re-)mobilized contaminants from reservoirs dislocated via floods and threatening especially aquatic organisms and cattle grazing in flood plains. Since other less persistent compounds seem to be more relevant to explain AhR-mediated activities in flood SPM, nonconventional PAHs and more polar compounds also need to be considered for risk assessment. Effect-directed analysis using broad-range fractionation methods taking into account compounds from polar to nonpolar should be applied for identification of pollutants causing biological effects, thus integrating biological and chemical parameters.


Archives of Environmental Contamination and Toxicology | 1990

Species-specific reaction of liver ultrastructure in zebrafish (Brachydanio rerio) and trout (Salmo gairdneri) after prolonged exposure to 4-chloroaniline

Thomas Braunbeck; Volker Storch; Horst Bresch

The morphological alterations of hepatocytes of female zebrafish,Brachydanio rerio, and fingerling rainbow trout,Salmo gairdneri, following prolonged exposure to 0.04, 0.2 and 1 mg/L of 4-chloroaniline were investigated by means of light and electron microscopy. Changes in peroxisomes were visualized by cytochemical demonstration of catalase activity after incubation in the alkaline diaminobenzidine medium. The amount of storage products was illustrated by the silver impregnation technique.In a dose-dependent manner, the reaction of female zebrafish liver is characterized by a disturbance of hepatocytic compartmentation, progressive fenestration and fractionation of the rough endoplasmic reticulum (RER), a decrease in the number of peroxisomes and catalase activity, stratified inclusions in mitochondria, and an augmentation of lysosomes and myelinated bodies. Trout hepatocytes display nuclear inclusions, fractionation and vesiculation of the RER, and an increase in mitochondria, but a decrease of peroxisomes and catalase activity. Whereas glycogen stores are exhausted at 1 mg/L 4-chloroaniline, lipid deposits are amplified. An elevated rate of hepatocytic mitosis as well as the occurrence of glycogen-condensing cells probably derived from hepatocytes indicate the induction of proliferative processes in trout liver.Evaluation and comparison of results with earlier reports suggest that despite the unspecificity of some alterations the combination of pathological symptoms yields a syndrome specific of the species and the substance studied. As a consequence, histological and cytological investigations are recommended as a routine supplement in an integrated test schedule for the assessment of sublethal effects of pollutants in the aquatic environment.

Collaboration


Dive into the Thomas Braunbeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Schulze

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner Manz

University of Koblenz and Landau

View shared research outputs
Top Co-Authors

Avatar

Jens C. Otte

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner Brack

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge