Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas C. Jeffries is active.

Publication


Featured researches published by Thomas C. Jeffries.


Nature Communications | 2016

Microbial diversity drives multifunctionality in terrestrial ecosystems

Manuel Delgado-Baquerizo; Fernando T. Maestre; Peter B. Reich; Thomas C. Jeffries; Juan J. Gaitán; Daniel Encinar; Miguel Berdugo; Colin D. Campbell; Brajesh K. Singh

Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Increasing aridity reduces soil microbial diversity and abundance in global drylands.

Fernando T. Maestre; Manuel Delgado-Baquerizo; Thomas C. Jeffries; David J. Eldridge; Victoria Ochoa; Beatriz Gozalo; José L. Quero; Miguel García-Gómez; Antonio Gallardo; Werner Ulrich; Matthew A. Bowker; Tulio Arredondo; Claudia Barraza-Zepeda; Donaldo Bran; Adriana Florentino; Juan J. Gaitán; Julio R. Gutiérrez; Elisabeth Huber-Sannwald; Mohammad Jankju; Rebecca L. Mau; Maria N. Miriti; Kamal Naseri; Abelardo Ospina; Ilan Stavi; Deli Wang; Natasha N. Woods; Xia Yuan; Eli Zaady; Brajesh K. Singh

Significance Climate change is increasing the degree of aridity in drylands, which occupy 41% of Earth’s surface and support 38% of its population. Soil bacteria and fungi are largely responsible for key ecosystem services, including soil fertility and climate regulation, yet their responses to changes in aridity are poorly understood. Using a field survey conducted in drylands worldwide and DNA-sequencing approaches, we found that increases in aridity reduce the diversity and abundance of soil bacteria and fungi. This study represents an important advancement in our understanding of soil microbial communities and their likely responses to ongoing climate change. Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.


Environmental Microbiology | 2012

Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems

Renee J. Smith; Thomas C. Jeffries; Ben Roudnew; Alison J. Fitch; Justin R. Seymour; Marina W. Delpin; Kelly Newton; Melissa H. Brown; James G. Mitchell

A metagenomic analysis of two aquifer systems located under a dairy farming region was performed to examine to what extent the composition and function of microbial communities varies between confined and surface-influenced unconfined groundwater ecosystems. A fundamental shift in taxa was seen with an overrepresentation of Rhodospirillales, Rhodocyclales, Chlorobia and Circovirus in the unconfined aquifer, while Deltaproteobacteria and Clostridiales were overrepresented in the confined aquifer. A relative overrepresentation of metabolic processes including antibiotic resistance (β-lactamase genes), lactose and glucose utilization and DNA replication were observed in the unconfined aquifer, while flagella production, phosphate metabolism and starch uptake pathways were all overrepresented in the confined aquifer. These differences were likely driven by differences in the nutrient status and extent of exposure to contaminants of the two groundwater systems. However, when compared with freshwater, ocean, sediment and animal gut metagenomes, the unconfined and confined aquifers were taxonomically and metabolically more similar to each other than to any other environment. This suggests that intrinsic features of groundwater ecosystems, including low oxygen levels and a lack of sunlight, have provided specific niches for evolution to create unique microbial communities. Obtaining a broader understanding of the structure and function of microbial communities inhabiting different groundwater systems is particularly important given the increased need for managing groundwater reserves of potable water.


The ISME Journal | 2015

Chemotaxis by natural populations of coral reef bacteria

Jessica Tout; Thomas C. Jeffries; Katherina Petrou; Gene W. Tyson; Nicole S. Webster; Melissa Garren; Roman Stocker; Peter J. Ralph; Justin R. Seymour

Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral–microbe associations, which may ultimately influence the health and stability of the coral holobiont.


FEMS Microbiology Ecology | 2017

Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions

Stacey M. Trevathan-Tackett; Justin R. Seymour; Daniel A. Nielsen; Peter I. Macreadie; Thomas C. Jeffries; Jonathan Sanderman; Jeff Baldock; Johanna M. Howes; Andy Steven; Peter J. Ralph

ABSTRACT Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial‐driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S‐rDNA sequencing, solid‐state NMR and microsensor profiling, we tested the hypothesis that elevated seawater temperatures and eutrophication enhance the microbial decomposition of seagrass leaf detritus and rhizome/root tissues. Nutrient additions had a negligible effect on seagrass decomposition, indicating an absence of nutrient limitation. Elevated temperatures caused a 19% higher biomass loss for aerobically decaying leaf detritus, coinciding with changes in bacterial community structure and enhanced lignocellulose degradation. Although, community shifts and lignocellulose degradation were also observed for rhizome/root decomposition, anaerobic decay was unaffected by temperature. These observations suggest that oxygen availability constrains the stimulatory effects of temperature increases on bacterial carbon remineralization, possibly through differential temperature effects on bacterial functional groups, including putative aerobic heterotrophs (e.g. Erythrobacteraceae, Hyphomicrobiaceae) and sulfate reducers (e.g. Desulfobacteraceae). Consequently, under elevated seawater temperatures, carbon accumulation rates may diminish due to higher remineralization rates at the sediment surface. Nonetheless, the anoxic conditions ubiquitous to seagrass sediments can provide a degree of carbon protection under warming seawater temperatures. &NA; Graphical Abstract Figure. While elevated seawater temperatures may diminish carbon accumulation at the sediment surface, the anoxic conditions in coastal sediments can provide carbon protection under warming temperatures, thus promoting carbon storage.


Microbial Ecology | 2014

Variability in Microbial Community Composition and Function Between Different Niches Within a Coral Reef

Jessica Tout; Thomas C. Jeffries; Nicole S. Webster; Roman Stocker; Peter J. Ralph; Justin R. Seymour

To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions.


PLOS ONE | 2011

Substrate Type Determines Metagenomic Profiles from Diverse Chemical Habitats

Thomas C. Jeffries; Justin R. Seymour; Jack A. Gilbert; Elizabeth A. Dinsdale; Kelly Newton; Sophie C. Leterme; Ben Roudnew; Renee J. Smith; Laurent Seuront; James G. Mitchell

Environmental parameters drive phenotypic and genotypic frequency variations in microbial communities and thus control the extent and structure of microbial diversity. We tested the extent to which microbial community composition changes are controlled by shifting physiochemical properties within a hypersaline lagoon. We sequenced four sediment metagenomes from the Coorong, South Australia from samples which varied in salinity by 99 Practical Salinity Units (PSU), an order of magnitude in ammonia concentration and two orders of magnitude in microbial abundance. Despite the marked divergence in environmental parameters observed between samples, hierarchical clustering of taxonomic and metabolic profiles of these metagenomes showed striking similarity between the samples (>89%). Comparison of these profiles to those derived from a wide variety of publically available datasets demonstrated that the Coorong sediment metagenomes were similar to other sediment, soil, biofilm and microbial mat samples regardless of salinity (>85% similarity). Overall, clustering of solid substrate and water metagenomes into discrete similarity groups based on functional potential indicated that the dichotomy between water and solid matrices is a fundamental determinant of community microbial metabolism that is not masked by salinity, nutrient concentration or microbial abundance.


PLOS ONE | 2012

High Nutrient Transport and Cycling Potential Revealed in the Microbial Metagenome of Australian Sea Lion (Neophoca cinerea) Faeces

Trish J. Lavery; Ben Roudnew; Justin R. Seymour; James G. Mitchell; Thomas C. Jeffries

Metagenomic analysis was used to examine the taxonomic diversity and metabolic potential of an Australian sea lion (Neophoca cinerea) gut microbiome. Bacteria comprised 98% of classifiable sequences and of these matches to Firmicutes (80%) were dominant, with Proteobacteria and Actinobacteria representing 8% and 2% of matches respectively. The relative proportion of Firmicutes (80%) to Bacteriodetes (2%) is similar to that in previous studies of obese humans and obese mice, suggesting the gut microbiome may confer a predisposition towards the excess body fat that is needed for thermoregulation within the cold oceanic habitats foraged by Australian sea lions. Core metabolic functions, including carbohydrate utilisation (14%), protein metabolism (9%) and DNA metabolism (7%) dominated the metagenome, but in comparison to human and fish gut microbiomes there was a significantly higher proportion of genes involved in phosphorus metabolism (2.4%) and iron scavenging mechanisms (1%). When sea lions defecate at sea, the relatively high nutrient metabolism potential of bacteria in their faeces may accelerate the dissolution of nutrients from faecal particles, enhancing their persistence in the euphotic zone where they are available to stimulate marine production.


The ISME Journal | 2016

High levels of heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation

Lauren F. Messer; Claire Mahaffey; Charlotte M. Robinson; Thomas C. Jeffries; Kirralee G. Baker; Jaime Bibiloni Isaksson; Martin Ostrowski; Martina A. Doblin; Mark V. Brown; Justin R. Seymour

Australia’s tropical waters represent predicted ‘hotspots’ for nitrogen (N2) fixation based on empirical and modelled data. However, the identity, activity and ecology of diazotrophs within this region are virtually unknown. By coupling DNA and cDNA sequencing of nitrogenase genes (nifH) with size-fractionated N2 fixation rate measurements, we elucidated diazotroph dynamics across the shelf region of the Arafura and Timor Seas (ATS) and oceanic Coral Sea during Austral spring and winter. During spring, Trichodesmium dominated ATS assemblages, comprising 60% of nifH DNA sequences, while Candidatus Atelocyanobacterium thalassa (UCYN-A) comprised 42% in the Coral Sea. In contrast, during winter the relative abundance of heterotrophic unicellular diazotrophs (δ-proteobacteria and γ-24774A11) increased in both regions, concomitant with a marked decline in UCYN-A sequences, whereby this clade effectively disappeared in the Coral Sea. Conservative estimates of N2 fixation rates ranged from <1 to 91 nmol l−1 day−1, and size fractionation indicated that unicellular organisms dominated N2 fixation during both spring and winter, but average unicellular rates were up to 10-fold higher in winter than in spring. Relative abundances of UCYN-A1 and γ-24774A11 nifH transcripts negatively correlated to silicate and phosphate, suggesting an affinity for oligotrophy. Our results indicate that Australia’s tropical waters are indeed hotspots for N2 fixation and that regional physicochemical characteristics drive differential contributions of cyanobacterial and heterotrophic phylotypes to N2 fixation.


Frontiers in Microbiology | 2016

Bacterioplankton Dynamics within a Large Anthropogenically Impacted Urban Estuary

Thomas C. Jeffries; Maria Luiza Schmitz Fontes; Daniel P Harrison; Virginie Van-Dongen-Vogels; Bradley D. Eyre; Peter J. Ralph; Justin R. Seymour

The abundant and diverse microorganisms that inhabit aquatic systems are both determinants and indicators of aquatic health, providing essential ecosystem services such as nutrient cycling but also causing harmful blooms and disease in impacted habitats. Estuaries are among the most urbanized coastal ecosystems and as a consequence experience substantial environmental pressures, providing ideal systems to study the influence of anthropogenic inputs on microbial ecology. Here we use the highly urbanized Sydney Harbor, Australia, as a model system to investigate shifts in microbial community composition and function along natural and anthopogenic physicochemical gradients, driven by stormwater inflows, tidal flushing and the input of contaminants and both naturally and anthropogenically derived nutrients. Using a combination of amplicon sequencing of the 16S rRNA gene and shotgun metagenomics, we observed strong patterns in microbial biogeography across the estuary during two periods: one of high and another of low rainfall. These patterns were driven by shifts in nutrient concentration and dissolved oxygen leading to a partitioning of microbial community composition in different areas of the harbor with different nutrient regimes. Patterns in bacterial composition were related to shifts in the abundance of Rhodobacteraceae, Flavobacteriaceae, Microbacteriaceae, Halomonadaceae, Acidomicrobiales, and Synechococcus, coupled to an enrichment of total microbial metabolic pathways including phosphorus and nitrogen metabolism, sulfate reduction, virulence, and the degradation of hydrocarbons. Additionally, community beta-diversity was partitioned between the two sampling periods. This potentially reflected the influence of shifting allochtonous nutrient inputs on microbial communities and highlighted the temporally dynamic nature of the system. Combined, our results provide insights into the simultaneous influence of natural and anthropogenic drivers on the structure and function of microbial communities within a highly urbanized aquatic ecosystem.

Collaboration


Dive into the Thomas C. Jeffries's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark V. Brown

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Eldridge

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ali Ijaz

University of Western Sydney

View shared research outputs
Researchain Logo
Decentralizing Knowledge