Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas C. Mettenleiter is active.

Publication


Featured researches published by Thomas C. Mettenleiter.


Nature Neuroscience | 2004

The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats

Florence M. Bareyre; Martin Kerschensteiner; Olivier Raineteau; Thomas C. Mettenleiter; Oliver Weinmann; Martin E. Schwab

In contrast to peripheral nerves, central axons do not regenerate. Partial injuries to the spinal cord, however, are followed by functional recovery. We investigated the anatomical basis of this recovery and found that after incomplete spinal cord injury in rats, transected hindlimb corticospinal tract (CST) axons sprouted into the cervical gray matter to contact short and long propriospinal neurons (PSNs). Over 12 weeks, contacts with long PSNs that bridged the lesion were maintained, whereas contacts with short PSNs that did not bridge the lesion were lost. In turn, long PSNs arborize on lumbar motor neurons, creating a new intraspinal circuit relaying cortical input to its original spinal targets. We confirmed the functionality of this circuit by electrophysiological and behavioral testing before and after CST re-lesion. Retrograde transynaptic tracing confirmed its integrity, and revealed changes of cortical representation. Hence, after incomplete spinal cord injury, spontaneous extensive remodeling occurs, based on axonal sprout formation and removal. Such remodeling may be crucial for rehabilitation in humans.


Science | 1995

Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response.

A.S.P. Jansen; Xay Van Nguyen; Vladimir Karpitskiy; Thomas C. Mettenleiter; Arthur D. Loewy

During stress, the activity of the sympathetic nervous system is changed in a global fashion, leading to an increase in cardiovascular function and a release of adrenal catecholamines. This response is thought to be regulated by a common set of brain neurons that provide a dual input to the sympathetic preganglionic neurons regulating cardiac and adrenal medullary functions. By using a double-virus transneuronal labeling technique, the existence of such a set of central autonomic neurons in the hypothalamus and brainstem was demonstrated. These neurons innervate both of the sympathetic outflow systems and likely function in circumstances where parallel sympathetic processing occurs, such as in the fight-or-flight response.


Journal of Clinical Investigation | 2002

Selective parasympathetic innervation of subcutaneous and intra-abdominal fat — functional implications

Felix Kreier; Eric Fliers; Peter J. Voshol; Corbert G. van Eden; Louis M. Havekes; Andries Kalsbeek; Caroline van Heijningen; Arja A. Sluiter; Thomas C. Mettenleiter; Johannes A. Romijn; Hans P. Sauerwein; Ruud M. Buijs

The wealth of clinical epidemiological data on the association between intra-abdominal fat accumulation and morbidity sharply contrasts with the paucity of knowledge about the determinants of fat distribution, which cannot be explained merely in terms of humoral factors. If it comes to neuronal control, until now, adipose tissue was reported to be innervated by the sympathetic nervous system only, known for its catabolic effect. We hypothesized the presence of a parasympathetic input stimulating anabolic processes in adipose tissue. Intra-abdominal fat pads in rats were first sympathetically denervated and then injected with the retrograde transneuronal tracer pseudorabies virus (PRV). The resulting labeling of PRV in the vagal motor nuclei of the brain stem reveals that adipose tissue receives vagal input. Next, we assessed the physiological impact of these findings by combining a fat pad-specific vagotomy with a hyperinsulinemic euglycemic clamp and RT-PCR analysis. Insulin-mediated glucose and FFA uptake were reduced by 33% and 36%, respectively, whereas the activity of the catabolic enzyme hormone-sensitive lipase increased by 51%. Moreover, expression of resistin and leptin mRNA decreased, whereas adiponectin mRNA did not change. All these data indicate an anabolic role for the vagal input to adipose tissue. Finally, we demonstrate somatotopy within the central part of the autonomic nervous system, as intra-abdominal and subcutaneous fat pads appeared to be innervated by separate sympathetic and parasympathetic motor neurons. In conclusion, parasympathetic input to adipose tissue clearly modulates its insulin sensitivity and glucose and FFA metabolism in an anabolic way. The implications of these findings for the (patho)physiology of fat distribution are discussed.


The Journal of Comparative Neurology | 2003

The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons

Ruud M. Buijs; Susanne E. la Fleur; Joke Wortel; Caroline van Heyningen; Laura Zuiddam; Thomas C. Mettenleiter; Andries Kalsbeek; Katsuya Nagai; Akira Niijima

Opposing parasympathetic and sympathetic signals determine the autonomic output of the brain to the body and the change in balance over the sleep‐wake cycle. The suprachiasmatic nucleus (SCN) organizes the activity/inactivity cycle and the behaviors that go along with it, but it is unclear how the hypothalamus, in particular the SCN, with its high daytime electrical activity, influences this differentiated autonomic balance. In a first series of experiments, we visualized hypothalamic pre‐sympathetic neurons by injecting the retrograde tracer Fluoro‐Gold into the thoracic sympathetic nuclei of the spinal cord. Pre‐parasympathetic neurons were revealed by injection of the retrograde trans‐synaptic tracer pseudorabies virus (PRV) into the liver and by sympathetic liver denervation, forcing the virus to infect via the vagus nerve only. This approach revealed separate pre‐sympathetic and pre‐parasympathetic neurons in the brainstem and hypothalamus. Next, selective retrograde tracing with two unique reporter PRV strains, one injected into the adrenal and the other into the sympathetic denervated liver, demonstrated that there are two separate populations of pre‐sympathetic and pre‐parasympathetic neurons within the paraventricular nucleus of the hypothalamus. Interestingly, this segregation persists into the SCN, where, as a result, the day‐night balance in autonomic function of the organs is affected by specialized pre‐sympathetic or pre‐parasympathetic SCN neurons. These separate preautonomic SCN neurons provide the anatomical basis for the circadian‐driven regulation of the parasympathetic and sympathetic autonomic output. J. Comp. Neurol. 464:36–48, 2003.


Nature Neuroscience | 1999

Suprachiasmatic nucleus: a central autonomic clock.

Takashi Ueyama; Karl E. Krout; Xay Van Nguyen; Vladimir Karpitskiy; Alice Kollert; Thomas C. Mettenleiter; Arthur D. Loewy

Circadian rhythms are daily changes in behavior and physiology produced by the suprachiasmatic nucleus (SCN) even in the absence of external stimuli, although photic input from the retina to the SCN entrains these changes to a 24-hour cycle. The SCN modulates autonomic and neuroendocrine function to prepare for diurnal or nocturnal changes in behavior, but its precise connections to the autonomic nervous system are unknown. We used viral transneuronal labeling to demonstrate extensive connections of the SCN with diverse types of sympathetic as well as parasympathetic motor systems. Double-virus transneuronal tracing showed connections of single SCN neurons to multiple autonomic systems. However, targets of SCN modulation seem limited to those that operate continuously under tonic, rather than phasic, control.


Neuroscience | 2002

CNS inputs to the suprachiasmatic nucleus of the rat.

Karl E. Krout; J Kawano; Thomas C. Mettenleiter; Arthur D. Loewy

The neural circuits that modulate the suprachiasmatic nucleus (SCN) of the rat were studied with the retrograde transneuronal tracer--pseudorabies virus. First-order afferents were also identified using cholera toxin beta subunit. Olfactory processing regions (viz., main olfactory bulb, anterior olfactory nucleus, taenia tecta, endopiriform nucleus, medial amygdaloid nucleus, piriform cortex, and posteriomedial cortical amygdaloid nucleus) were virally labeled. The subfornical organ directly innervates SCN; two other circumventricular organs: organum vasculosum of the lamina terminalis and area postrema provide multisynaptic inputs. Direct limbic afferents arise from lateral septum, bed nucleus of the stria terminalis, amygdalohippocampal zone, and ventral subiculum; multineuronal connections come from the basolateral and basomedial amygdaloid nuclei, ventral hippocampus, amygdalopiriform area, as well as lateral entorhinal, perirhinal, and ectorhinal cortices. Most preoptic regions project directly to SCN. Multisynaptic inputs come from the lateral preoptic region. Hypothalamic inputs originate from the anterior, arcuate, dorsal, dorsomedial, lateral, paraventricular, posterior, periventricular posterior, retrochiasmatic, subparaventricular, ventromedial and tuberomammillary nuclei. Paraventricular thalamic nucleus, intergeniculate leaflet and zona incerta directly innervate SCN. Polyneuronal inputs arise from the subparafascicular parvicellular thalamic nucleus. Brainstem afferents originate from the pretectum, superior colliculus, periaqueductal gray matter, parabrachial nucleus, pedunculopontine nucleus, raphe system, locus coeruleus, nucleus incertus and reticular formation. Nucleus tractus solitarius, C3 catecholamine region, rostral ventrolateral medulla and spinal trigeminal nucleus provide indirect inputs. We propose that the SCN receives feedback primarily from interoceptive systems such as the circumventricular, autonomic, and neuroendocrine systems that are important in the central regulation of glucose metabolism (e.g., insulin and glucocorticoids).


Annals of the New York Academy of Sciences | 2006

Synaptic and Neurotransmitter Activation of Cardiac Vagal Neurons in the Nucleus Ambiguus

Jijiang Wang; Mustapha Irnaten; Robert A. Neff; Priya Venkatesan; Cory Evans; Arthur D. Loewy; Thomas C. Mettenleiter; David Mendelowitz

Abstract: Cardiac vagal neurons play a critical role in the control of heart rate and cardiac function. These neurons, which are primarily located in the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DMNX), dominate the neural control of heart rate under normal conditions. Cardiac vagal activity is diminished and unresponsive in many disease states, while restoration of parasympathetic activity to the heart lessens ischemia and arrhythmias and decreases the risk of sudden death. Recent work has demonstrated that cardiac vagal neurons are intrinsically silent and therefore rely on synaptic input to control their firing. To date, three major synaptic inputs to cardiac vagal neurons have been identified. Stimulation of the nucleus tractus solitarius evokes a glutamatergic pathway that activates both NMDA and non‐NMDA glutamatergic postsynaptic currents in cardiac vagal neurons. Acetylcholine excites cardiac vagal neurons via three mechanisms, activating a direct ligand‐gated postsynaptic nicotinic receptor, enhancing postsynaptic non‐NMDA currents, and presynaptically by facilitating transmitter release. This enhancement by nicotine is dependent upon activation of pre‐ and postsynaptic P‐type voltage‐gated calcium channels. Additionally, there is a GABAergic innervation of cardiac vagal neurons. The transsynaptic pseudorabies virus that expresses GFP (PRV‐GFP) has been used to identify, for subsequent electrophysiologic study, neurons that project to cardiac vagal neurons. Bartha PRV‐GFP‐labeled neurons retain their normal electrophysiological properties, and the labeled baroreflex pathways that control heart rate are unaltered by the virus.


Journal of General Virology | 1997

Protection of pigs against Aujeszky's disease by DNA vaccination

Gerdts; Jöns A; Makoschey B; Visser N; Thomas C. Mettenleiter

Vaccination with DNA constructs encoding viral antigens has been shown to induce antiviral immunity in various model hosts. However, relevant natural virus-host systems have so far been analysed to only a very limited extent. To test the efficacy of DNA vaccination in an economically important large animal, pigs were immunized against Aujeszkys disease, a serious virus infection caused by the alphaherpesvirus pseudorabies virus (PrV), which is characterized by severe central nervous and respiratory symptoms. After vaccination with plasmid vectors containing genes for immunogenic envelope glycoproteins C or D (gC or gD) of PrV under control of the major immediate early promotor of human cytomegalovirus, animals developed serum antibodies which recognized the respective antigen in immunoblot and exhibited neutralizing activity. Animals vaccinated with the gC expression plasmid were fully protected against a lethal challenge with PrV strain 75V19, and showed partial protection against the highly virulent NIA-3 strain. In contrast, protection was not observed after vaccination with the gD plasmid. Three intramuscular or intradermal immunizations with as little as 1 microgram of gC plasmid DNA resulted in sero-conversion and partial protection against lethal NIA-3 Infection. Specific antibodies were detected until at least 9 months after vaccination. In addition, a cellular immune response specific for gC could be demonstrated in proliferation assays of peripheral mononuclear lymphocytes. Our results thus demonstrate the potency of DNA vaccination for protection of large animals against a lethal virus infection.


Emerging Infectious Diseases | 2012

Schmallenberg virus as possible ancestor of Shamonda virus.

Katja V. Goller; Dirk Höper; Horst Schirrmeier; Thomas C. Mettenleiter; Martin Beer

Schmallenberg virus (SBV), an orthobunyavirus of the Simbu serogroup, recently emerged in Europe and has been suggested to be a Shamonda/Sathuperi virus reassortant. Results of full-genome and serologic investigations indicate that SBV belongs to the species Sathuperi virus and is a possible ancestor of the reassortant Shamonda virus.


PLOS Pathogens | 2008

Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP

Danijela Koppers-Lalic; Marieke C. Verweij; Andrea D. Lipińska; Ying Wang; Edwin Quinten; Eric Reits; Joachim Koch; Sandra Loch; Marisa Marcondes Rezende; Franz Daus; Krystyna Bieńkowska-Szewczyk; Nikolaus Osterrieder; Thomas C. Mettenleiter; Mirjam H. M. Heemskerk; Robert Tampé; Jacques Neefjes; Shafiqul I. Chowdhury; Maaike E. Ressing; F.A.M. Rijsewijk; Emmanuel J. H. J. Wiertz

Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.

Collaboration


Dive into the Thomas C. Mettenleiter's collaboration.

Top Co-Authors

Avatar

Barbara G. Klupp

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Jutta Veits

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Peter Teifke

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Harald Granzow

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Stech

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Axel Karger

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Bernd Hoffmann

Friedrich Loeffler Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge