Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas C. Pochapsky is active.

Publication


Featured researches published by Thomas C. Pochapsky.


Proceedings of the National Academy of Sciences of the United States of America | 2011

A soluble α-synuclein construct forms a dynamic tetramer

Wei Wang; Iva Perovic; Johnathan Chittuluru; Alice Kaganovich; Linh T. T. Nguyen; Jingling Liao; Jared R. Auclair; Derrick E. Johnson; Anuradha Landeru; Alana K. Simorellis; Shulin Ju; Mark R. Cookson; Francisco J. Asturias; Jeffrey N. Agar; Brian N. Webb; ChulHee Kang; Dagmar Ringe; Gregory A. Petsko; Thomas C. Pochapsky; Quyen Q. Hoang

A heterologously expressed form of the human Parkinson disease-associated protein α-synuclein with a 10-residue N-terminal extension is shown to form a stable tetramer in the absence of lipid bilayers or micelles. Sequential NMR assignments, intramonomer nuclear Overhauser effects, and circular dichroism spectra are consistent with transient formation of α-helices in the first 100 N-terminal residues of the 140-residue α-synuclein sequence. Total phosphorus analysis indicates that phospholipids are not associated with the tetramer as isolated, and chemical cross-linking experiments confirm that the tetramer is the highest-order oligomer present at NMR sample concentrations. Image reconstruction from electron micrographs indicates that a symmetric oligomer is present, with three- or fourfold symmetry. Thermal unfolding experiments indicate that a hydrophobic core is present in the tetramer. A dynamic model for the tetramer structure is proposed, based on expected close association of the amphipathic central helices observed in the previously described micelle-associated “hairpin” structure of α-synuclein.


Nature Structural & Molecular Biology | 2002

Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae

Thomas C. Pochapsky; Susan Sondej Pochapsky; Tingting Ju; Huaping Mo; Faizah Al-Mjeni; Michael J. Maroney

Here we report the structure of acireductone dioxygenase (ARD), the first determined for a new family of metalloenzymes. ARD represents a branch point in the methionine salvage pathway leading from methylthioadenosine to methionine and has been shown to catalyze different reactions depending on the type of metal ion bound in the active site. The solution structure of nickel-containing ARD (Ni-ARD) was determined using NMR methods. X-ray absorption spectroscopy, assignment of hyperfine shifted NMR resonances and conserved domain homology were used to model the metal-binding site because of the paramagnetism of the bound Ni2+. Although there is no structure in the Protein Data Bank within 3 Å r.m.s deviation of that of Ni-ARD, the enzyme active site is located in a conserved double-stranded b-helix domain. Furthermore, the proposed Ni-ARD active site shows significant post-facto structural homology to the active sites of several metalloenzymes in the cupin superfamily.


Antioxidants & Redox Signaling | 2010

Conformational Plasticity and Structure/Function Relationships in Cytochromes P450

Thomas C. Pochapsky; Sophia Kazanis; Marina Dang

The cytochrome P450s are a superfamily of enzymes that are found in all kingdoms of living organisms, and typically catalyze the oxidative addition of atomic oxygen to an unactivated C-C or C-H bond. Over 8000 nonredundant sequences of putative and confirmed P450 enzymes have been identified, but three-dimensional structures have been determined for only a small fraction of these. While all P450 enzymes for which structures have been determined share a common global fold, the flexibility and modularity of structure around the active site account for the ability of P450 enzymes to accommodate a vast number of structurally dissimilar substrates and support a wide range of selective oxidations. In this review, known P450 structures are compared, and some structural criteria for prediction of substrate selectivity and reaction type are suggested. The importance of dynamic processes such as redox-dependent and effector-induced conformational changes in determining catalytic competence and regio- and stereoselectivity is discussed, and noncrystallographic methods for characterizing P450 structures and dynamics, in particular, mass spectrometry and nuclear magnetic resonance spectroscopy are reviewed.


Biochimie | 1996

A STRUCTURE-BASED MODEL FOR CYTOCHROME P450CAM-PUTIDAREDOXIN INTERACTIONS

Thomas C. Pochapsky; Teresa A. Lyons; S. Kazanis; T. Arakaki; Gayathri Ratnaswamy

Putidaredoxin (Pdx) is a Fe2S2 ferredoxin which acts as the physiological reductant of cytochrome P-450cam (CYP101). A model for the solution structure of oxidized Pdx has been determined using NMR methods (Pochapsky et al (1994) Biochemistry 33, 6424-6432). 1H-15N correlations and redox-dependent amide exchange rates have also been described (Lyons et al (1996) Protein Sci 5, 627-639). Data obtained from mutagenesis and kinetic measurements concerning the interactions of Pdx and CYP101 are summarized. A model for the structure of the homologous ferredoxin adrenodoxin (Adx) is also described, and data concerning Adx activity are discussed in relation to this structure. The structures of Pdx and CYP101 were used as starting points for molecular modeling and molecular dynamics simulations. Close approach between the metal centers of the two proteins and interaction between aromatic residues on the surfaces of the proteins are premised. The resulting complex exhibits three intermolecular salt bridges, five intermolecular hydrogen bonds and a 12 A distance between the metal centers. The first direct observations of interaction between Pdx and CYP101 (by two-dimensional NMR of 15N-labeled Pdx in solution with CYP101) are described. The results of the NMR experiments indicate that conformational gating of the electron transfer complex between CYP101 and Pdx may be important.


Journal of the American Chemical Society | 2013

The Dynamic Structure of α‑Synuclein Multimers

Thomas Gurry; Orly Ullman; Charles K. Fisher; Iva Perovic; Thomas C. Pochapsky; Collin M. Stultz

α-Synuclein, a protein that forms ordered aggregates in the brains of patients with Parkinsons disease, is intrinsically disordered in the monomeric state. Several studies, however, suggest that it can form soluble multimers in vivo that have significant secondary structure content. A number of studies demonstrate that α-synuclein can form β-strand-rich oligomers that are neurotoxic, and recent observations argue for the existence of soluble helical tetrameric species in cellulo that do not form toxic aggregates. To gain further insight into the different types of multimeric states that this protein can adopt, we generated an ensemble for an α-synuclein construct that contains a 10-residue N-terminal extension, which forms multimers when isolated from Escherichia coli. Data from NMR chemical shifts and residual dipolar couplings were used to guide the construction of the ensemble. Our data suggest that the dominant state of this ensemble is a disordered monomer, complemented by a small fraction of helical trimers and tetramers. Interestingly, the ensemble also contains trimeric and tetrameric oligomers that are rich in β-strand content. These data help to reconcile seemingly contradictory observations that indicate the presence of a helical tetramer in cellulo on the one hand, and a disordered monomer on the other. Furthermore, our findings are consistent with the notion that the helical tetrameric state provides a mechanism for storing α-synuclein when the protein concentration is high, thereby preventing non-membrane-bound monomers from aggregating.


Journal of the American Chemical Society | 2010

Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

Robert W. Herbst; I Perovic; Martin-Diaconescu; K O'Brien; Peter T. Chivers; Susan Sondej Pochapsky; Thomas C. Pochapsky; Michael J. Maroney

Helicobacter pylori , a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys)(4) site to a Zn(His)(2)(Cys)(2) site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the beta-CH(2) protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys)(4)) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model wherein HypA controls the flow of nickel traffic in the cell in response to nickel availability and pH.


Journal of Molecular Biology | 2008

Solution NMR Structure of Putidaredoxin–Cytochrome P450cam Complex via a Combined Residual Dipolar Coupling–Spin Labeling Approach Suggests a Role for Trp106 of Putidaredoxin in Complex Formation

Wei Zhang; Susan Sondej Pochapsky; Thomas C. Pochapsky; Nitin U. Jain

The 58-kDa complex formed between the [2Fe-2S] ferredoxin, putidaredoxin (Pdx), and cytochrome P450cam (CYP101) from the bacterium Pseudomonas putida has been investigated by high-resolution solution NMR spectroscopy. Pdx serves as both the physiological reductant and effector for CYP101 in the enzymatic reaction involving conversion of substrate camphor to 5-exo-hydroxycamphor. In order to obtain an experimental structure for the oxidized Pdx-CYP101 complex, a combined approach using orientational data on the two proteins derived from residual dipolar couplings and distance restraints from site-specific spin labeling of Pdx has been applied. Spectral changes for residues in and near the paramagnetic metal cluster region of Pdx in complex with CYP101 have also been mapped for the first time using (15)N and (13)C NMR spectroscopy, leading to direct identification of the residues strongly affected by CYP101 binding. The new NMR structure of the Pdx-CYP101 complex agrees well with results from previous mutagenesis and biophysical studies involving residues at the binding interface such as formation of a salt bridge between Asp38 of Pdx and Arg112 of CYP101, while at the same time identifying key features different from those of earlier modeling studies. Analysis of the binding interface of the complex reveals that the side chain of Trp106, the C-terminal residue of Pdx and critical for binding to CYP101, is located across from the heme-binding loop of CYP101 and forms non-polar contacts with several residues in the vicinity of the heme group on CYP101, pointing to a potentially important role in complex formation.


Journal of Biological Chemistry | 2011

Acireductone Dioxygenase 1 (ARD1) Is an Effector of the Heterotrimeric G Protein β Subunit in Arabidopsis

Erin J. Friedman; Helen X. Wang; Kun Jiang; Iva Perovic; Aditi R. Deshpande; Thomas C. Pochapsky; Brenda Temple; Stephanie N. Hicks; T. Kendall Harden; Alan M. Jones

Heterotrimeric G protein complexes are conserved from plants to mammals, but the complexity of each system varies. Arabidopsis thaliana contains one Gα, one Gβ (AGB1), and at least three Gγ subunits, allowing it to form three versions of the heterotrimer. This plant model is ideal for genetic studies because mammalian systems contain hundreds of unique heterotrimers. The activation of these complexes promotes interactions between both the Gα subunit and the Gβγ dimer with enzymes and scaffolds to propagate signaling to the cytoplasm. However, although effectors of Gα and Gβ are known in mammals, no Gβ effectors were previously known in plants. Toward identifying AGB1 effectors, we genetically screened for dominant mutations that suppress Gβ-null mutant (agb1-2) phenotypes. We found that overexpression of acireductone dioxygenase 1 (ARD1) suppresses the 2-day-old etiolated phenotype of agb1-2. ARD1 is homologous to prokaryotic and eukaryotic ARD proteins; one function of ARDs is to operate in the methionine salvage pathway. We show here that ARD1 is an active metalloenzyme, and AGB1 and ARD1 both control embryonic hypocotyl length by modulating cell division; they also may contribute to the production of ethylene, a product of the methionine salvage pathway. ARD1 physically interacts with AGB1, and ARD enzymatic activity is stimulated by AGB1 in vitro. The binding interface on AGB1 was deduced using a comparative evolutionary approach and tested using recombinant AGB1 mutants. A possible mechanism for AGB1 activation of ARD1 activity was tested using directed mutations in a loop near the substrate-binding site.


Structure | 2008

A Functional Proline Switch in Cytochrome P450cam

Bo OuYang; Susan Sondej Pochapsky; Marina Dang; Thomas C. Pochapsky

The two-protein complex between putidaredoxin (Pdx) and cytochrome P450(cam) (CYP101) is the catalytically competent species for camphor hydroxylation by CYP101. We detected a conformational change in CYP101 upon binding of Pdx that reorients bound camphor appropriately for hydroxylation. Experimental evidence shows that binding of Pdx converts a single X-proline amide bond in CYP101 from trans or distorted trans to cis. Mutation of proline 89 to isoleucine yields a mixture of both bound camphor orientations, that seen in Pdx-free and that seen in Pdx-bound CYP101. A mutation in CYP101 that destabilizes the cis conformer of the Ile 88-Pro 89 amide bond results in weaker binding of Pdx. This work provides direct experimental evidence for involvement of X-proline isomerization in enzyme function.


Journal of Biological Chemistry | 2012

Substrate Recognition by the Multifunctional Cytochrome P450 Mycg in Mycinamicin Hydroxylation and Epoxidation Reactions.

Shengying Li; Drew R. Tietz; Florentine U. Rutaganira; P.M. Kells; Yojiro Anzai; Fumio Kato; Thomas C. Pochapsky; David H. Sherman; Larissa M. Podust

Background: A hierarchy of catalytic steps characterizes multifunctional cytochrome P450 enzymes. Results: In the post-polyketide oxidative tailoring of mycinamicins by MycG, the two methoxy groups of mycinose are sensors that mediate initial recognition and discriminate between closely related molecules. Conclusion: Bulky and conformationally restrained macrolide substrates advance to the catalytically productive mode through multiple steps. Significance: Protein engineering facilitating substrate progression may enhance catalysis. The majority of characterized cytochrome P450 enzymes in actinomycete secondary metabolic pathways are strictly substrate-, regio-, and stereo-specific. Examples of multifunctional biosynthetic cytochromes P450 with broader substrate and regio-specificity are growing in number and are of particular interest for biosynthetic and chemoenzymatic applications. MycG is among the first P450 monooxygenases characterized that catalyzes both hydroxylation and epoxidation reactions in the final biosynthetic steps, leading to oxidative tailoring of the 16-membered ring macrolide antibiotic mycinamicin II in the actinomycete Micromonospora griseorubida. The ordering of steps to complete the biosynthetic process involves a complex substrate recognition pattern by the enzyme and interplay between three tailoring modifications as follows: glycosylation, methylation, and oxidation. To understand the catalytic properties of MycG, we structurally characterized the ligand-free enzyme and its complexes with three native metabolites. These include substrates mycinamicin IV and V and their biosynthetic precursor mycinamicin III, which carries the monomethoxy sugar javose instead of the dimethoxylated sugar mycinose. The two methoxy groups of mycinose serve as sensors that mediate initial recognition to discriminate between closely related substrates in the post-polyketide oxidative tailoring of mycinamicin metabolites. Because x-ray structures alone did not explain the mechanisms of macrolide hydroxylation and epoxidation, paramagnetic NMR relaxation measurements were conducted. Molecular modeling based on these data indicates that in solution substrate may penetrate the active site sufficiently to place the abstracted hydrogen atom of mycinamicin IV within 6 Å of the heme iron and ∼4 Å of the oxygen of iron-ligated water.

Collaboration


Dive into the Thomas C. Pochapsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Maroney

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge