Thomas C. Trusk
Medical University of South Carolina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas C. Trusk.
Journal of Cellular Biochemistry | 2007
Russell A. Norris; Brook Damon; Vladimir Mironov; Vladimir Kasyanov; Anand Ramamurthi; Ricardo A. Moreno-Rodriguez; Thomas C. Trusk; Jay D. Potts; Richard L. Goodwin; Jeffrey M. Davis; Stanley Hoffman; Xuejun Wen; Yukiko Sugi; Christine B. Kern; Corey H. Mjaatvedt; Debi Turner; Toru Oka; Simon J. Conway; Jeffery D. Molkentin; Gabor Forgacs; Roger R. Markwald
Periostin is predominantly expressed in collagen‐rich fibrous connective tissues that are subjected to constant mechanical stresses including: heart valves, tendons, perichondrium, cornea, and the periodontal ligament (PDL). Based on these data we hypothesize that periostin can regulate collagen I fibrillogenesis and thereby affect the biomechanical properties of connective tissues. Immunoprecipitation and immunogold transmission electron microscopy experiments demonstrate that periostin is capable of directly interacting with collagen I. To analyze the potential role of periostin in collagen I fibrillogenesis, gene targeted mice were generated. Transmission electron microscopy and morphometric analyses demonstrated reduced collagen fibril diameters in skin dermis of periostin knockout mice, an indication of aberrant collagen I fibrillogenesis. In addition, differential scanning calorimetry (DSC) demonstrated a lower collagen denaturing temperature in periostin knockout mice, reflecting a reduced level of collagen cross‐linking. Functional biomechanical properties of periostin null skin specimens and atrioventricular (AV) valve explant experiments provided direct evidence of the role that periostin plays in regulating the viscoelastic properties of connective tissues. Collectively, these data demonstrate for the first time that periostin can regulate collagen I fibrillogenesis and thereby serves as an important mediator of the biomechanical properties of fibrous connective tissues. J. Cell. Biochem. 101: 695–711, 2007.
Developmental Dynamics | 2007
Brian S. Snarr; Elaine E. Wirrig; Aimee L. Phelps; Thomas C. Trusk; Andy Wessels
The mesenchymal tissues involved in cardiac septation are derived from different sources. In addition to endocardial‐derived mesenchyme, the heart also receives contributions from the neural crest, the proepicardium, and the dorsal mesenchymal protrusion (DMP). Whereas the contributions of the neural crest and proepicardium have been thoroughly studied, the DMP has received little attention. Here, we present the results of a comprehensive spatiotemporal study of the DMP in cardiac development. Using the Tie2‐Cre mouse, immunohistochemistry, and AMIRA reconstructions, we show that the DMP, in combination with the mesenchymal cap on the primary atrial septum, fuse with the major atrioventricular cushions to close the primary atrial foramen and to form the atrioventricular mesenchymal complex. In this complex, the DMP constitutes a discrete prominent mesenchymal component, wedged in between the major cushions. This new model for atrioventricular septation may provide novel insights into understanding the etiology of congenital cardiac malformations. Developmental Dynamics 236:1287–1294, 2007.
Acta Biomaterialia | 2014
Jia Jia; Dylan Richards; Samuel Pollard; Yu Tan; Joshua Rodriguez; Richard P. Visconti; Thomas C. Trusk; Michael J. Yost; Hai Yao; Roger R. Markwald; Ying Mei
Recent advances in three-dimensional (3-D) printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been used extensively as bioinks for 3-D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations was prepared to develop a bioink platform that can be applied to a multitude of tissue engineering applications. The authors systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting the structure integrity of the lattice structures (except the highly degradable one) after 8days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications.
Medical Education | 1999
Robert W. Ogilvie; Thomas C. Trusk; Amy V. Blue
The introduction of computerized testing offers several advantages for test administration, however, little research has examined students’ attitudes toward computerized testing. This paper, reports the attitudes of 202 students in a first year cell biology and histology course toward computerized testing and its influence on their study habits over a three year period.
Biofabrication | 2014
Yu Tan; Dylan Richards; Thomas C. Trusk; Richard P. Visconti; Michael J. Yost; Mark S. Kindy; Christopher J. Drake; William Scott Argraves; Roger R. Markwald; Ying Mei
Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation.
Microscopy and Microanalysis | 2005
Christine E. Miller; Robert P. Thompson; Michael R. Bigelow; George Gittinger; Thomas C. Trusk; David Sedmera
Confocal microscopy allows for optical sectioning of tissues, thus obviating the need for physical sectioning and subsequent registration to obtain a three-dimensional representation of tissue architecture. However, practicalities such as tissue opacity, light penetration, and detector sensitivity have usually limited the available depth of imaging to 200 microm. With the emergence of newer, more powerful systems, we attempted to push these limits to those dictated by the working distance of the objective. We used whole-mount immunohistochemical staining followed by clearing with benzyl alcohol-benzyl benzoate (BABB) to visualize three-dimensional myocardial architecture. Confocal imaging of entire chick embryonic hearts up to a depth of 1.5 mm with voxel dimensions of 3 microm was achieved with a 10x dry objective. For the purpose of screening for congenital heart defects, we used endocardial painting with fluorescently labeled poly-L-lysine and imaged BABB-cleared hearts with a 5x objective up to a depth of 2 mm. Two-photon imaging of whole-mount specimens stained with Hoechst nuclear dye produced clear images all the way through stage 29 hearts without significant signal attenuation. Thus, currently available systems allow confocal imaging of fixed samples to previously unattainable depths, the current limiting factors being objective working distance, antibody penetration, specimen autofluorescence, and incomplete clearing.
Archive | 1998
Roger R. Markwald; Thomas C. Trusk; Ricardo A. Moreno-Rodriguez
In the present chapter, we seek to integrate the progressive and dynamic changes in structure that transform a bent, hollow tube into a mature, fully defined, four-chambered heart with emerging concepts of molecular regulation.
Virtual and Physical Prototyping | 2009
Vladimir Mironov; Jing Zhang; Carmine Gentile; Ken Brakke; Thomas C. Trusk; K. Jakab; Gabor Forgacs; Vladimir Kasyanov; Richard P. Visconti; Roger R. Markwald
Organ printing is a variant of the biomedical application of rapid prototyping technology or layer-by-layer additive biofabrication of 3D tissue and organ constructs using self-assembled tissue spheroids as building blocks. Bioengineering of perfusable intraorgan branched vascular trees incorporated into 3D tissue constructs is essential for the survival of bioprinted thick 3D tissues and organs. In order to design the optimal ‘blueprint’ for digital bioprinting of intraorgan branched vascular trees, the coefficients of tissue retraction associated with post-printing vascular tissue spheroid fusion and remodelling must be determined and incorporated into the original CAD. Using living tissue spheroids assembled into ring-like and tube-like vascular tissue constructs, the coefficient of tissue retraction has been experimentally evaluated. It has been shown that the internal diameter of ring-like and the height of tubular-like tissue constructs are significantly reduced during tissue spheroid fusion. During the tissue fusion process, the individual tissue spheroids also change their shape from ball-like to a conus-like form. A simple formula for the calculation of the necessary number of tissue spheroids for biofabrication of ring-like structures of desirable diameter has been deduced. These data provide sufficient information to design optimal CAD for bioprinted branched vascular trees of desirable final geometry and size.
Developmental Dynamics | 2009
Brooke J. Damon; Mathieu Remond; Michael R. Bigelow; Thomas C. Trusk; Wenjie Xie; Renato Perucchio; David Sedmera; Stewart Denslow; Robert P. Thompson
The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge‐like trabeculae by two methods: calculation within a two‐dimensional three‐variable lumped model and simulated expansion of a three‐dimensional, four‐layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535–1546, 2009.
Annals of Biomedical Engineering | 2014
Caitlin A. Czajka; Agnes Nagy Mehesz; Thomas C. Trusk; Michael J. Yost; Christopher J. Drake
Work described herein characterizes tissues formed using scaffold-free, non-adherent systems and investigates their utility in modular approaches to tissue engineering. Immunofluorescence analysis revealed that all tissues formed using scaffold-free, non-adherent systems organize tissue cortical cytoskeletons that appear to be under tension. Tension in these tissues was also evident when modules (spheroids) were used to generate larger tissues. Real-time analysis of spheroid fusion in unconstrained systems illustrated modular motion that is compatible with alterations in tensions, due to the process of disassembly/reassembly of the cortical cytoskeletons required for module fusion. Additionally, tissues generated from modules placed within constrained linear molds, which restrict modular motion, deformed upon release from molds. That tissue deformation is due in full or in part to imbalanced cortical actin cytoskeleton tensions resulting from the constraints imposed by mold systems is suggested from our finding that treatment of forming tissues with Y-27632, a selective inhibitor of ROCK phosphorylation, reduced tissue deformation. Our studies suggest that the deformation of scaffold-free tissues due to tensions mediated via the tissue cortical cytoskeleton represents a major and underappreciated challenge to modular tissue engineering.