Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Carzaniga is active.

Publication


Featured researches published by Thomas Carzaniga.


RNA | 2008

Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in Escherichia coli

Federica Briani; Serena Curti; Francesca Rossi; Thomas Carzaniga; Pierluigi Mauri; Gianni Dehò

The exoribonuclease polynucleotide phosphorylase (PNPase, encoded by pnp) is a major player in bacterial RNA decay. In Escherichia coli, PNPase expression is post-transcriptionally regulated at the level of mRNA stability. The primary transcript is very efficiently processed by the endonuclease RNase III at a specific site and the processed pnp mRNA is rapidly degraded in a PNPase-dependent manner. While investigating the PNPase autoregulation mechanism we found, by UV-cross-linking experiments, that the ribosomal protein S1 in crude extracts binds to the pnp-mRNA leader region. We assayed the potential role of S1 protein in pnp gene regulation by modulating S1 expression from depletion to overexpression. We found that S1 depletion led to a sharp decrease of the amount of pnp and other tested mRNAs, as detected by Northern blotting, whereas S1 overexpression caused a strong stabilization of pnp and the other transcripts. Surprisingly, mRNA stabilization depended on PNPase, as it was not observed in a pnp deletion strain. PNPase-dependent stabilization, however, was not detected by chemical decay assay of bulk mRNA. Overall, our data suggest that PNPase exonucleolytic activity may be modulated by the translation potential of the target mRNAs and that, upon ribosomal protein S1 overexpression, PNPase protects from degradation a set of full-length mRNAs. It thus appears that a single mRNA species may be differentially targeted to either decay or PNPase-dependent stabilization, thus preventing its depletion in conditions of fast turnover.


Nucleic Acids Research | 2011

Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins

Paula P. Cardenas; Thomas Carzaniga; Sandro Zangrossi; Federica Briani; Esther Garcia-Tirado; Gianni Dehò; Juan C. Alonso

Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3′ → 5′ polarity in the presence of Mn2+ and low inorganic phosphate (Pi) concentration, or to extend a 3′-OH end in the presence dNDP·Mn2+. Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3′-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.


BMC Microbiology | 2012

The RNA Processing Enzyme Polynucleotide Phosphorylase Negatively Controls Biofilm Formation by Repressing Poly-N-Acetylglucosamine (PNAG) Production in Escherichia coli C

Thomas Carzaniga; Davide Antoniani; Gianni Dehò; Federica Briani; Paolo Landini

BackgroundTransition from planktonic cells to biofilm is mediated by production of adhesion factors, such as extracellular polysaccharides (EPS), and modulated by complex regulatory networks that, in addition to controlling production of adhesion factors, redirect bacterial cell metabolism to the biofilm mode.ResultsDeletion of the pnp gene, encoding polynucleotide phosphorylase, an RNA processing enzyme and a component of the RNA degradosome, results in increased biofilm formation in Escherichia coli. This effect is particularly pronounced in the E. coli strain C-1a, in which deletion of the pnp gene leads to strong cell aggregation in liquid medium. Cell aggregation is dependent on the EPS poly-N-acetylglucosamine (PNAG), thus suggesting negative regulation of the PNAG biosynthetic operon pgaABCD by PNPase. Indeed, pgaABCD transcript levels are higher in the pnp mutant. Negative control of pgaABCD expression by PNPase takes place at mRNA stability level and involves the 5’-untranslated region of the pgaABCD transcript, which serves as a cis-element regulating pgaABCD transcript stability and translatability.ConclusionsOur results demonstrate that PNPase is necessary to maintain bacterial cells in the planktonic mode through down-regulation of pgaABCD expression and PNAG production.


Wiley Interdisciplinary Reviews - Rna | 2016

Regulation and functions of bacterial PNPase.

Federica Briani; Thomas Carzaniga; Gianni Dehò

Polynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3′‐end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3′‐end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram‐negative and Gram‐positive bacteria. Moreover, it participates in maturation and quality control of stable RNA. PNPase autoregulates its own expression at post‐transcriptional level through a complex mechanism that involves the endoribonuclease RNase III and translation control. The activity of PNPase is modulated in an intricate and still unclear manner by interactions with small molecules and recruitment in different multiprotein complexes. Not surprisingly, given the wide spectrum of PNPase substrates, PNPase‐defective mutations in different bacterial species have pleiotropic effects and perturb the execution of genetic programs involving drastic changes in global gene expression such as biofilm formation, growth at suboptimal temperatures, and virulence. WIREs RNA 2016, 7:241–258. doi: 10.1002/wrna.1328


MicrobiologyOpen | 2013

Role of the ribosome-associated protein PY in the cold-shock response of Escherichia coli

Fabio Di Pietro; Anna Brandi; Nadire Dzeladini; Attilio Fabbretti; Thomas Carzaniga; Lolita Piersimoni; Cynthia L. Pon; Anna Maria Giuliodori

Protein Y (PY) is an Escherichia coli cold‐shock protein which has been proposed to be responsible for the repression of bulk protein synthesis during cold adaptation. Here, we present in vivo and in vitro data which clarify the role of PY and its mechanism of action. Deletion of yfiA, the gene encoding protein PY, demonstrates that this protein is dispensable for cold adaptation and is not responsible for the shutdown of bulk protein synthesis at the onset of the stress, although it is able to partially inhibit translation. In vitro assays reveal that the extent of PY inhibition changes with different mRNAs and that this inhibition is related to the capacity of PY of binding 30S subunits with a fairly strong association constant, thus stimulating the formation of 70S monomers. Furthermore, our data provide evidence that PY competes with the other ribosomal ligands for the binding to the 30S subunits. Overall these results suggest an alternative model to explain PY function during cold shock and to reconcile the inhibition caused by PY with the active translation observed for some mRNAs during cold shock.


Biochimie | 2014

A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding

Thomas Carzaniga; Elisa Mazzantini; Marco Nardini; Maria Elena Regonesi; Claudio Greco; Federica Briani; Luca De Gioia; Gianni Dehò; Paolo Tortora

Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.


Molecular Immunology | 2016

Hereditary angioedema in a Jordanian family with a novel missense mutation in the C1-inhibitor N-terminal domain.

Saied A. Jaradat; Sonia Caccia; Rifaat Rawashdeh; Motasem Melhem; Ali Al-Hawamdeh; Thomas Carzaniga; Hazem I. Haddad

Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) is an autosomal dominant disease caused by mutations in the SERPING1 gene. A Jordanian family, including 14 individuals with C1-INH-HAE clinical symptoms, was studied. In the propositus and his parents, SERPING1 had four mutations leading to amino acid substitutions. Two are known polymorphic variants (c.167T>C; p.Val34Ala and c.1438G>A; p.Val458Met), the others are newly described. One (c.203C>T; p.Thr46Ile) is located in the N-terminal domain of the C1-inhibitor protein and segregates with angioedema symptoms in the family. The other (c.800C>T; p.Ala245Val) belongs to the serpin domain, and derives from the unaffected father. DNA from additional 24 family members were screened for c.203C>T mutation in the target gene. All individuals heterozygous for the c.203C>T mutation had antigenic and functional plasma levels of C1-inhibitor below 50% of normal, confirming the diagnosis of type I C1-INH-HAE. Angioedema symptoms were present in 14 of 16 subjects carrier for the c.203T allele. Among these subjects, those carrying the c.800T variation had more severe and frequent symptoms than subjects without this mutation. This family-based study provides the first evidence that multiple amino acid substitutions in SERPING1 could influence C1-INH-HAE phenotype.


Scientific Reports | 2018

Intermittent C1-Inhibitor Deficiency Associated with Recessive Inheritance: Functional and Structural Insight

Sonia Caccia; Chiara Suffritti; Thomas Carzaniga; Romina Berardelli; Silvia Berra; Vincenzo Martorana; Annamaria Fra; Christian Drouet; Marco Cicardi

C1-inhibitor is a serine protease inhibitor (serpin) controlling complement and contact system activation. Gene mutations result in reduced C1-inhibitor functional plasma level causing hereditary angioedema, a life-threatening disorder. Despite a stable defect, the clinical expression of hereditary angioedema is unpredictable, and the molecular mechanism underlying this variability remains undisclosed. Here we report functional and structural studies on the Arg378Cys C1-inhibitor mutant found in a patient presenting reduced C1-inhibitor levels, episodically undergoing normalization. Expression studies resulted in a drop in mutant C1-innhibitor secretion compared to wild-type. Notwithstanding, the purified proteins had similar features. Thermal denaturation experiments showed a comparable denaturation profile, but the mutant thermal stability decays when tested in conditions reproducing intracellular crowding.Our findings suggest that once correctly folded, the Arg378Cys C1-inhibitor is secreted as an active, although quite unstable, monomer. However, it could bear a folding defect, occasionally promoting protein oligomerization and interfering with the secretion process, thus accounting for its plasma level variability. This defect is exacerbated by the nature of the mutation since the acquired cysteine leads to the formation of non-functional homodimers through inter-molecular disulphide bonding. All the proposed phenomena could be modulated by specific environmental conditions, rendering this mutant exceptionally vulnerable to mild stress.


BMC Microbiology | 2017

Polynucleotide phosphorylase is implicated in homologous recombination and DNA repair in Escherichia coli

Thomas Carzaniga; Giulia Sbarufatti; Federica Briani; Gianni Dehò

BackgroundPolynucleotide phosphorylase (PNPase, encoded by pnp) is generally thought of as an enzyme dedicated to RNA metabolism. The pleiotropic effects of PNPase deficiency is imputed to altered processing and turnover of mRNAs and small RNAs, which in turn leads to aberrant gene expression. However, it has long since been known that this enzyme may also catalyze template-independent polymerization of dNDPs into ssDNA and the reverse phosphorolytic reaction. Recently, PNPase has been implicated in DNA recombination, repair, mutagenesis and resistance to genotoxic agents in diverse bacterial species, raising the possibility that PNPase may directly, rather than through control of gene expression, participate in these processes.ResultsIn this work we present evidence that in Escherichia coli PNPase enhances both homologous recombination upon P1 transduction and error prone DNA repair of double strand breaks induced by zeocin, a radiomimetic agent. Homologous recombination does not require PNPase phosphorolytic activity and is modulated by its RNA binding domains whereas error prone DNA repair of zeocin-induced DNA damage is dependent on PNPase catalytic activity and cannot be suppressed by overexpression of RNase II, the other major enzyme (encoded by rnb) implicated in exonucleolytic RNA degradation. Moreover, E. coli pnp mutants are more sensitive than the wild type to zeocin. This phenotype depends on PNPase phosphorolytic activity and is suppressed by rnb, thus suggesting that zeocin detoxification may largely depend on RNA turnover.ConclusionsOur data suggest that PNPase may participate both directly and indirectly through regulation of gene expression to several aspects of DNA metabolism such as recombination, DNA repair and resistance to genotoxic agents.


Journal of Bacteriology | 2009

Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase Expression Revisited

Thomas Carzaniga; Federica Briani; Sandro Zangrossi; Giuseppe Merlino; Paolo Marchi; Gianni Dehò

Collaboration


Dive into the Thomas Carzaniga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge