Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Cavalier-Smith is active.

Publication


Featured researches published by Thomas Cavalier-Smith.


Biological Reviews | 1998

A revised six-kingdom system of life

Thomas Cavalier-Smith

A revised six‐kingdom system of life is presented, down to the level of infraphylum. As in my 1983 system Bacteria are treated as a single kingdom, and eukaryotes are divided into only five kingdoms: Protozoa, Animalia, Fungi, Plantae and Chromista. Intermediate high level categories (superkingdom, subkingdom, branch, infrakingdom, superphylum, subphylum and infraphylum) are extensively used to avoid splitting organisms into an excessive number of kingdoms and phyla (60 only being recognized). The two ‘zoological’ kingdoms, Protozoa and Animalia, are subject to the International Code of Zoological Nomenclature, the kingdom Bacteria to the International Code of Bacteriological Nomenclature, and the three ‘botanical’ kingdoms (Plantae, Fungi, Ghromista) to the International Code of Botanical Nomenclature. Circumscriptions of the kingdoms Bacteria and Plantae remain unchanged since Cavalier‐Smith (1981). The kingdom Fungi is expanded by adding Microsporidia, because of protein sequence evidence that these amitochondrial intracellular parasites are related to conventional Fungi, not Protozoa. Fungi are subdivided into four phyla and 20 classes; fungal classification at the rank of subclass and above is comprehensively revised. The kingdoms Protozoa and Animalia are modified in the light of molecular phylogenetic evidence that Myxozoa are actually Animalia, not Protozoa, and that mesozoans are related to bilaterian animals. Animalia are divided into four subkingdoms: Radiata (phyla Porifera, Cnidaria, Placozoa, Ctenophora), Myxozoa, Mesozoa and Bilateria (bilateral animals: all other phyla). Several new higher level groupings are made in the animal kingdom including three new phyla: Acanthognatha (rotifers, acanthocephalans, gastrotrichs, gnathostomulids), Brachiozoa (brachiopods and phoronids) and Lobopoda (onychophorans and tardigrades), so only 23 animal phyla are recognized. Archezoa, here restricted to the phyla Metamonada and Trichozoa, are treated as a subkingdom within Protozoa, as in my 1983 six‐kingdom system, not as a separate kingdom. The recently revised phylum Rhizopoda is modified further by adding more flagellates and removing some ‘rhizopods’ and is therefore renamed Cercozoa. The number of protozoan phyla is reduced by grouping Mycetozoa and Archamoebae (both now infraphyla) as a new subphylum Conosa within the phylum Amoebozoa alongside the subphylum Lobosa, which now includes both the traditional aerobic lobosean amoebae and Multicilia. Haplosporidia and the (formerly microsporidian) metchnikovellids are now both placed within the phylum Sporozoa. These changes make a total of only 13 currently recognized protozoan phyla, which are grouped into two subkingdoms: Archezoa and Neozoa; the latter is modified in circumscription by adding the Discicristata, a new infrakingdom comprising the phyla Percolozoa and Euglenozoa). These changes are discussed in relation to the principles of megasystematics, here defined as systematics that concentrates on the higher levels of classes, phyla, and kingdoms. These principles also make it desirable to rank Archaebacteria as an infrakingdom of the kingdom Bacteria, not as a separate kingdom. Archaebacteria are grouped with the infrakingdom Posibacteria to form a new subkingdom, Unibacteria, comprising all bacteria bounded by a single membrane. The bacterial subkingdom Negibacteria, with separate cytoplasmic and outer membranes, is subdivided into two infrakingdoms: Lipobacteria, which lack lipopolysaccharide and have only phospholipids in the outer membrane, and Glycobacteria, with lipopolysaccharides in the outer leaflet of the outer membrane and phospholipids in its inner leaflet. This primary grouping of the 10 bacterial phyla into subkingdoms is based on the number of cell‐envelope membranes, whilst their subdivision into infrakingdoms emphasises their membrane chemistry; definition of the negibacterial phyla, five at least partly photosynthetic, relies chiefly on photosynthetic mechanism and cell‐envelope structure and chemistry corroborated by ribosomal RNA phylogeny. The kingdoms Protozoa and Chromista are slightly changed in circumscription by transferring subphylum Opalinata (classes Opalinea, Proteromonadea, Blastocystea cl. nov.) from Protozoa into infrakingdom Heterokonta of the kingdom Chromista. Opalinata are grouped with the subphylum Pseudofungi and the zooflagellate Developayella elegans (in a new subphylum Bigyromonada) to form a new botanical phylum (Bigyra) of heterotrophs with a double ciliary transitional helix, making it necessary to abandon the phylum name Opalozoa, which formerly included Opalinata. The loss of ciliary retronemes in Opalinata is attributed to their evolution of gut commensalism. The nature of the ancestral chromist is discussed in the light of recent phylogenetic evidence.


Journal of Eukaryotic Microbiology | 1999

Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree.

Thomas Cavalier-Smith

The biggest unsolved problems in chloroplast evolution are the origins of dinoflagellate and euglenoid chloroplasts, which have envelopes of three membranes not two like plants and chromists, and of the sporozoan plastid, bounded by four smooth membranes. I review evidence that all three of these protozoan plastid types originated by secondary symbiogenesis from eukaryotic endosymbionts. Instead of separate symbiogenetic events, I argue that dinoflagellate and sporozoan plastids are directly related and that the common ancestor of dinoflagellates and Sporozoa was photosynthetic. I suggest that the last common ancestor of all Alveolata was photosynthetic and acquired its chlorophyll c‐containing plastids in the same endosymbiogenetic event as those of Chromista. Chromista and Alveolata are postulated to be a clade designated chromalveolates. I propose that euglenoids obtained their plastids from the same (possibly ulvophycean) green alga as chlorarachneans and that Discicristata (Euglenozoa plus Percolozoa) and Cercozoa (the group including chlorarachneans) form a clade designated cabozoa (protozoa with chlorophyll a + b). If both theories are correct, there were only two secondary symbiogenetic events (witnessed by the chlorarachnean and cryptomonad nucleomorphs) in the history of life, not seven as commonly assumed. This greatly reduces the postulated number of independent origins of chloroplast protein‐targeting machinery and of gene transfers from endosymbiont to host nuclei. I discuss the membrane and plastid losses and innovations in protein targeting implied by these theories, the comparative evidence for them, and their implications for eukaryote megaphylogeny. The principle of evolutionary conservatism leads to a novel theory for the function of periplastid vesicles in membrane biogenesis of chlorarachneans and chromists and of the key steps in secondary symbiogenesis. Protozoan classification is also slightly revised by abandoning the probably polyphyletic infrakingdom Actinopoda, grouping Foraminifera and Radiolaria as a new infrakingdom Retaria, placing Heliozoa within a revised infrakingdom Sarcomastigota, establishing a new flagellate phylum Loukozoa for Jakobea plus Anaeromonadea within an emended subkingdom Eozoa, and ranking Archezoa as an infrakingdom within Eozoa.


Trends in Plant Science | 2000

Membrane heredity and early chloroplast evolution

Thomas Cavalier-Smith

Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.


Nature | 2001

The highly reduced genome of an enslaved algal nucleus

Susan E. Douglas; Stefan Zauner; Martin Fraunholz; Margaret J. Beaton; Susanne Penny; Lang-Tuo Deng; Xiaonan Wu; Michael Reith; Thomas Cavalier-Smith; Uwe G. Maier

Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.


Trends in Genetics | 1991

Intron phylogeny: a new hypothesis.

Thomas Cavalier-Smith

The three major classes of intron are clearly of unequal antiquity. Structured (often self-splicing and sometimes mobile) introns are the most ancient, probably dating (at least for group I) from the ancestral (eubacterial) cell 3500 million years ago, and were originally restricted to tRNA. Protein-spliced introns (usually in tRNA) probably evolved from them by a radical change in splicing mechanism in the common ancestor of eukaryotes and archaebacteria, perhaps only about 1700 million years ago. Spliceosomal introns probably evolved from group-II-like self-splicing introns after the origin of the nucleus between 1700 and 1000 million years ago, and were probably mostly inserted into previously unsplit protein-coding genes after the origin of mitochondria 1000 million years ago.


Nature | 1999

Single gene circles in dinoflagellate chloroplast genomes

Zhaoduo Zhang; Beverley R. Green; Thomas Cavalier-Smith

Photosynthetic dinoflagellates are important aquatic primary producers and notorious causes of toxic ‘red tides’. Typical dinoflagellate chloroplasts differ from all other plastids in having a combination of three envelope membranes and peridinin-chlorophyll a /c light-harvesting pigments. Despite evidence of a dinoflagellete satellite DNA containing chloroplast genes, previous attempts to obtain chloroplast gene sequences have been uniformly unsuccessful. Here we show that the dinoflagellate chloroplast DNA genome structure is unique. Complete sequences of chloroplast ribosomal RNA genes and seven chloroplast protein genes from the dinoflagellate Heterocapsa triquetra reveal that each is located alone on a separate minicircular chromosome: ‘one gene–one circle’. The genes are the most divergent known from chloroplast genomes. Each circle has an unusual tripartite non-coding region (putative replicon origin), which is highly conserved among the nine circles through extensive gene conversion, but is very divergent between species. Several other dinoflagellate species have minicircular chloroplast genes, indicating that this type of genomic organization may have evolved in ancestral peridinean dinoflagellates. Phylogenetic analysis indicates that dinoflagellate chloroplasts are related to chromistan and red algal chloroplasts and supports their origin by secondary symbiogenesis,,.


Proceedings - Royal Society of London. Biological sciences | 2004

Only six kingdoms of life.

Thomas Cavalier-Smith

There are many more phyla of microbes than of macro–organisms, but microbial biodiversity is poorly understood because most microbes are uncultured. Phylogenetic analysis of rDNA sequences cloned after PCR amplification of DNA extracted directly from environmental samples is a powerful way of exploring our degree of ignorance of major groups. As there are only five eukaryotic kingdoms, two claims using such methods for numerous novel ‘kingdom–level‘ lineages among anaerobic eukaryotes would be remarkable, if true. By reanalysing those data with 167 known species (not merely 8–37), I identified relatives for all 8–10 ‘mysterious‘ lineages. All probably belong to one of five already recognized phyla (Amoebozoa, Cercozoa, Apusozoa, Myzozoa, Loukozoa) within the basal kingdom Protozoa, mostly in known classes, sometimes even in known orders, families or genera. This strengthens the idea that the ancestral eukaryote was a mitochondrial aerobe. Analogous claims of novel bacterial divisions or kingdoms may reflect the weak resolution and grossly non–clock–like evolution of ribosomal rRNA, not genuine phylum–level biological disparity. Critical interpretation of environmental DNA sequences suggests that our overall picture of microbial biodiversity at phylum or division level is already rather good and comprehensive and that there are no uncharacterized kingdoms of life. However, immense lower–level diversity remains to be mapped, as does the root of the tree of life.


Journal of Molecular Evolution | 2001

Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements.

Juan F. Saldarriaga; F.J.R. Taylor; Patrick J. Keeling; Thomas Cavalier-Smith

Abstract. Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow.


Annals of the New York Academy of Sciences | 1987

The Origin of Eukaryote and Archaebacterial Cells

Thomas Cavalier-Smith

Ultrastructural and molecular data have recently so rejuvenated the study of organismic diversity that we may soon have a clear understanding of the overall phylogeny of the living world, and even of the major steps in its diversification. Of these, the transition from the prokaryote to the eukaryote cell is certainly the most profound, ’ so much so that Prokaryota and Eukaryota are now generally ranked as superkingdoms (TABLE 1). To explain the origin of the eukaryote cell one has to determine the properties of the most primitive eukaryote, identify its likely prokaryotic ancestor, and explain in detail how the latter evolved into the former. That is the object of this paper. Identifying the most primitive eukaryote depends upon a proper understanding of the diversity and phylogenetic relationships within the most primitive eukaryote kingdom, the Protozoa. TABLE 2 indicates the protozoan classification and nomenclature that will be used in this paper: those protozoa recently separated as the subkingdom Archezoa are of special significance for early eukaryote evolution. All four archezoan phyla, though fully eukaryotic, completely lack any trace of mitochondria; the first three of them, especially, have a variety of other apparently primitive characters suggesting that they are living representatives of the earliest phases of eukaryote evolution. I argue that the most primitive eukaryote was a phagotrophic archezoan, with no chloroplasts, no mitochondria, no microbodies, and no stacked smooth cisternae forming a Golgi dictyosome, but possessing a single cilium with a sheaf of rootlet microtubules surrounding the single nucleus that divided by a closed mitosis in which the ciliary kinetosome was attached to the centrosome. The present day Mastigamoebea closely fit this description and may be “living fossils.” I suggest that this first eukaryote had a single chromosome and could form a resting cyst or spore in which (as in modem Anaxostylea) the ciliary axoneme and rootlets were not disassembled, and that with the origin of sexual syngamy allopolyploidy led to the formation of a cell with two chromosomes and two dissimilar (i.e., “anisokont”) cilia. This ancestral two-chromosomed anisokont perfected a primitive one-step meiosis and was the ancestor not only of the amitochondrial Metamonada and Parabasalia but also of all eukaryotes with mitochondria and chloroplasts, which it acquired by endosymbiosis of purple nonsulfur bacteria6 and cyanobacteria’ respectively. The


Protist | 2003

Phylogeny and Classification of Phylum Cercozoa (Protozoa)

Thomas Cavalier-Smith; Ema E.-Y. Chao

The protozoan phylum Cercozoa embraces numerous ancestrally biciliate zooflagellates, euglyphid and other filose testate amoebae, chlorarachnean algae, phytomyxean plant parasites (e.g. Plasmodiophora, Phagomyxa), the animal-parasitic Ascetosporea, and Gromia. We report 18S rRNA sequences of 27 culturable zooflagellates, many previously of unknown taxonomic position. Phylogenetic analysis shows that all belong to Cercozoa. We revise cercozoan classification in the light of our analysis and ultrastructure, adopting two subphyla: Filosa subphyl. nov. a clade comprising Monadofilosa and Reticulofilosa, ranked as superclasses, ancestrally having the same very rare base-pair substitution as all opisthokonts; and subphylum Endomyxa emend. comprising classes Phytomyxea (Plasmodiophorida, Phagomyxida), Ascetosporea (Haplosporidia, Paramyxida, Claustrosporida ord. nov.) and Gromiidea cl. nov., which did not. Monadofilosa comprise Sarcomonadea, zooflagellates with a propensity to glide on their posterior cilium and/or generate filopodia (e.g. Metopion; Cercomonas; Heteromitidae - Heteromita, Bodomorpha, Proleptomonas and Allantion) and two new classes: Imbricatea (with silica scales: Euglyphida; Thaumatomonadida, including Alias, Thaumatomastix) and Thecofilosea (Cryomonadida; Tectofilosida ord. nov. - non-scaly filose amoebae, e.g. Pseudodifflugia). Reticulofilosa comprise classes Chlorarachnea, Spongomonadea and Proteomyxidea (e.g. Massisteria, Gymnophrys, a Dimorpha-like protozoan). Cercozoa, now with nine classes and 17 orders (four new), will probably include many, possibly most, other filose and reticulose amoebae and zooflagellates not yet assigned to phyla.

Collaboration


Dive into the Thomas Cavalier-Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Bass

Centre for Environment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beverley R. Green

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ema Chao

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge