Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Claudepierre is active.

Publication


Featured researches published by Thomas Claudepierre.


Molecular and Cellular Neuroscience | 2010

Lack of Niemann-Pick type C1 induces age-related degeneration in the mouse retina.

Thomas Claudepierre; Michel Paques; Manuel Simonutti; Isabelle Buard; José Sahel; Robert A. Maue; Serge Picaud; Frank W. Pfrieger

Niemann-Pick type C (NPC) disease is an inherited lysosomal storage disease and caused by mutations in Npc1 or Npc2, which mediate cooperatively the egress of cholesterol from lysosomes. The disease entails progressive neurodegeneration, whose cause is poorly understood. Here, we report that Npc1 is distributed in distinct layers of the mouse retina and that its deficiency causes striking retinal degeneration in 2-month-old mice with signs of age-related maculopathies. This includes impaired visual function, accumulation of lipofuscin in the retinal pigment epithelium layer, degeneration of photoreceptor outer segments, disruption of synaptic layers and an increase in autophagy markers in the ganglion cell layer. Moreover, the lack of Npc1 results in the upregulation of proteins that mediate cellular cholesterol release in the retina. Our findings suggest that Npc1 is required for normal retinal function and that its absence may serve as model to study age-related degeneration of the retina.


PLOS ONE | 2010

Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength

Stanislaw Schastak; Svitlana Ziganshyna; Burkhard Gitter; Peter Wiedemann; Thomas Claudepierre

The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections.


Neurochemical Research | 2012

Pigment epithelium-derived factor released by Müller glial cells exerts neuroprotective effects on retinal ganglion cells.

Jan Darius Unterlauft; Wolfram Eichler; Konstantin Kuhne; Xiu Mei Yang; Yousef Yafai; Peter Wiedemann; Andreas Reichenbach; Thomas Claudepierre

Survival of retinal ganglion cells (RGC) is compromised in several vision-threatening disorders such as ischemic and hypertensive retinopathies and glaucoma. Pigment epithelium-derived factor (PEDF) is a naturally occurring pleiotropic secreted factor in the retina. PEDF produced by retinal glial (Müller) cells is suspected to be an essential component of neuron-glial interactions especially for RGC, as it can protect this neuronal type from ischemia-induced cell death. Here we show that PEDF treatment can directly affect RGC survival in vitro. Using Müller cell-RGC-co-cultures we observed that activity of Müller-cell derived soluble mediators can attenuate hypoxia-induced damage and RGC loss. Finally, neutralizing the activity of PEDF in glia-conditioned media partially abolished the neuroprotective effect of glia, leading to an increased neuronal death in hypoxic condition. Altogether our results suggest that PEDF is crucially involved in the neuroprotective process of reactive Müller cells towards RGC.


Neuroreport | 1997

Dystrophins in developing retina: Dp260 expression correlates with synaptic maturation.

Franccois Rodius; Thomas Claudepierre; Haydeé Rosas-Vargas; Bulmaro Cisneros; Cecilia Montañez; Henri Dreyfus; Dominique Mornet; Alvaro Rendon

Dystrophin, the protein altered in Duchenne muscular dystrophy (DMD), is necessary for normal retinal function and exists in several isoforms. We examined the expression of dystrophin and utrophin proteins and transcripts in the rat retina at different developmental stages using Western blots and semi-quantitative RTPCR. Our results revealed the presence of utrophin (DRP1), G-utrophin and/or DRP2 and four dystrophin isoforms (Dp427, Dp260, Dp140, Dp71) in the normal adult rat retina. Only Dp260 showed a marked progressive increase with age at both protein and mRNA levels. This variation is consistent with the establishment of synaptic functions in the developing retina and suggests a key role for this apo-dystrophin in synaptogenesis.


PLOS ONE | 2011

Genetic Deletion of Laminin Isoforms β2 and γ3 Induces a Reduction in Kir4.1 and Aquaporin-4 Expression and Function in the Retina

Petra G. Hirrlinger; Thomas Pannicke; Ulrike Winkler; Thomas Claudepierre; Shweta Varshney; Christine Schulze; Andreas Reichenbach; William J. Brunken; Johannes Hirrlinger

Background Glial cells such as retinal Müller glial cells are involved in potassium ion and water homeostasis of the neural tissue. In these cells, inwardly rectifying potassium (Kir) channels and aquaporin-4 water channels play an important role in the process of spatial potassium buffering and water drainage. Moreover, Kir4.1 channels are involved in the maintenance of the negative Müller cell membrane potential. The subcellular distribution of Kir4.1 and aquaporin-4 channels appears to be maintained by interactions with extracellular and intracellular molecules. Laminins in the extracellular matrix, dystroglycan in the membrane, and dystrophins in the cytomatrix form a complex mediating the polarized expression of Kir4.1 and aquaporin-4 in Müller cells. Methodology/Principal Findings The aim of the present study was to test the function of the β2 and γ3 containing laminins in murine Müller cells. We used knockout mice with genetic deletion of both β2 and γ3 laminin genes to assay the effects on Kir4.1 and aquaporin-4. We studied protein and mRNA expression by immunohistochemistry, Western Blot, and quantitative RT-PCR, respectively, and membrane currents of isolated cells by patch-clamp experiments. We found a down-regulation of mRNA and protein of Kir4.1 as well as of aquaporin-4 protein in laminin knockout mice. Moreover, Müller cells from laminin β2 and γ3 knockout mice had reduced Kir-mediated inward currents and their membrane potentials were more positive than those in age-matched wild-type mice. Conclusion These findings demonstrate a strong impact of laminin β2 and γ3 subunits on the expression and function of both aquaporin-4 and Kir4.1, two important membrane proteins in Müller cells.


PLOS ONE | 2012

Chorionic gonadotropin and its receptor are both expressed in human retina, possible implications in normal and pathological conditions.

Sladjana Dukic-Stefanovic; Jan Walther; Sebastian Wosch; Gerolf Zimmermann; Peter Wiedemann; Henry Alexander; Thomas Claudepierre

Extra-gonadal role of gonadotropins has been re-evaluated over the last 20 years. In addition to pituitary secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH), the CNS has been clearly identified as a source of hCG acting locally to influence behaviour. Here we demonstrated that human retina is producing this gonadotropin that acts as a neuroactive molecule. Müller glial and retinal pigmented epithelial (RPE) cells are producing hCG that may affects neighbour cells expressing its receptor, namely cone photoreceptors. It was previously described that amacrine and retinal ganglion (RGC) cells are targets of the gonadotropin releasing hormone that control the secretion of all gonadotropins. Therefore our findings suggest that a complex neuroendocrine circuit exists in the retina, involving hCG secreting cells (glial and RPE), hCG targets (photoreceptors) and hCG-release controlling cells (amacrine and RGC). The exact physiological functions of this circuit have still to be identified, but the proliferation of photoreceptor-derived tumor induced by hCG demonstrated the need to control this neuroendocrine loop.


PLOS ONE | 2014

Efficient Photodynamic Therapy on Human Retinoblastoma Cell Lines

Jan Walther; Stanislas Schastak; Sladjana Dukic-Stefanovic; Peter Wiedemann; Jochen Neuhaus; Thomas Claudepierre

Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma.


Neurochemical Research | 2011

Expression of Dystrophins and the Dystrophin-Associated-Protein Complex by Pituicytes in Culture

Abdelkader Bougrid; Thomas Claudepierre; Serge Picaud; Ghazi Ayad; Dominique Mornet; Latifa Dorbani-Mamine; Alvaro Rendon; Halima Darbeida

The dystrophin-associated-protein complex (DAPC) has been extensively characterized in the central nervous system where it is localized both in neuronal and glial cells. Few studies have characterized this complex in the neurohypophysis. To further study this complex in pituicytes, the resident astroglia of the neurophypophysis, we used adult pituicyte cultures and determined the expression and localization of dystrophins/utrophins and the DAPC by RT–PCR, western blotting and immunofluorescence. Our data show that the pituicytes express dystrophins, utrophins and several members of the DAPC including dystroglycans, δ-, γ-sarcoglycans, α-dystrobrevin-1 and α1-syntrophin. Double immunofluorescence analysis shows that laminin colocalizes with dystroglycan, suggesting that similarly to muscle and astrocytes, the DAPC interacts with the extracellular matrix in pituicytes. Collectively these findings show that dystrophins/utrophins and members of the DAPC are expressed in pituicytes where they may form multiprotein complexes and play a role in the retraction-reinsertion of pituicyte endfeet during specific physiological conditions.


The Journal of Neuroscience | 2000

Laminin Expression in Adult and Developing Retinae: Evidence of Two Novel CNS Laminins

Richard T. Libby; Marie-France Champliaud; Thomas Claudepierre; Yin Xu; Erin P. Gibbons; Manuel Koch; Robert E. Burgeson; Dale D. Hunter; William J. Brunken


Journal of Cell Science | 2000

Characterization of the intermolecular associations of the dystrophin-associated glycoprotein complex in retinal Muller glial cells

Thomas Claudepierre; Cécile Dalloz; Dominique Mornet; Kiichiro Matsumura; José Sahel; Alvaro Rendon

Collaboration


Dive into the Thomas Claudepierre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Brunken

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge