Thomas Cokelaer
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Cokelaer.
Cell | 2016
Francesco Iorio; Theo Knijnenburg; Daniel J. Vis; Graham R. Bignell; Michael P. Menden; Michael Schubert; Nanne Aben; Emanuel Gonçalves; Syd Barthorpe; Howard Lightfoot; Thomas Cokelaer; Patricia Greninger; Ewald van Dyk; Han Chang; Heshani de Silva; Holger Heyn; Xianming Deng; Regina K. Egan; Qingsong Liu; Tatiana Mironenko; Xeni Mitropoulos; Laura Richardson; Jinhua Wang; Tinghu Zhang; Sebastian Moran; Sergi Sayols; Maryam Soleimani; David Tamborero; Nuria Lopez-Bigas; Petra Ross-Macdonald
Summary Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.
Nature Biotechnology | 2013
Matthew T. Weirauch; Raquel Norel; Matti Annala; Yue Zhao; Todd Riley; Julio Saez-Rodriguez; Thomas Cokelaer; Anastasia Vedenko; Shaheynoor Talukder; Phaedra Agius; Aaron Arvey; Philipp Bucher; Curtis G. Callan; Cheng Wei Chang; Chien-Yu Chen; Yong-Syuan Chen; Yu-Wei Chu; Jan Grau; Ivo Grosse; Vidhya Jagannathan; Jens Keilwagen; Szymon M. Kiełbasa; Justin B. Kinney; Holger Klein; Miron B. Kursa; Harri Lähdesmäki; Kirsti Laurila; Chengwei Lei; Christina S. Leslie; Chaim Linhart
Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a proteins DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.
BMC Systems Biology | 2013
Claudine Chaouiya; Duncan Bérenguier; Sarah M. Keating; Aurélien Naldi; Martijn P. van Iersel; Nicolas Rodriguez; Andreas Dräger; Finja Büchel; Thomas Cokelaer; Bryan Kowal; Benjamin Wicks; Emanuel Gonçalves; Julien Dorier; Michel Page; Pedro T. Monteiro; Axel von Kamp; Ioannis Xenarios; Hidde de Jong; Michael Hucka; Steffen Klamt; Denis Thieffry; Nicolas Le Novère; Julio Saez-Rodriguez; Tomáš Helikar
BackgroundQualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing.ResultsWe present the Systems Biology Markup Language (SBML) Qualitative Models Package (“qual”), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models.ConclusionsSBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.
Nature Methods | 2016
Steven M. Hill; Laura M. Heiser; Thomas Cokelaer; Michael Unger; Nicole K. Nesser; Daniel E. Carlin; Yang Zhang; Artem Sokolov; Evan O. Paull; Christopher K. Wong; Kiley Graim; Adrian Bivol; Haizhou Wang; Fan Zhu; Bahman Afsari; Ludmila Danilova; Alexander V. Favorov; Wai Shing Lee; Dane Taylor; Chenyue W. Hu; Byron L. Long; David P. Noren; Alexander J Bisberg; Gordon B. Mills; Joe W. Gray; Michael R. Kellen; Thea Norman; Stephen H. Friend; Amina A. Qutub; Elana J. Fertig
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.
BMC Bioinformatics | 2014
José Egea; David Henriques; Thomas Cokelaer; Alejandro Fernández Villaverde; Aidan MacNamara; Diana-Patricia Danciu; Julio R. Banga; Julio Saez-Rodriguez
BackgroundOptimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools.ResultsWe present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods.ConclusionsMEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.
BMC Systems Biology | 2014
Pablo Meyer; Thomas Cokelaer; Deepak Chandran; Kyung Hyuk Kim; Po-Ru Loh; George Tucker; Mark Lipson; Bonnie Berger; Clemens Kreutz; Andreas Raue; Bernhard Steiert; Jens Timmer; Erhan Bilal; Herbert M. Sauro; Gustavo Stolovitzky; Julio Saez-Rodriguez
BackgroundAccurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear. We approached these questions in an unbiased manner using a unique community-based approach in the context of the DREAM initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in silico test framework under which participants could probe a network with hidden parameters by requesting a range of experimental assays; results of these experiments were simulated according to a model of network dynamics only partially revealed to participants.ResultsWe proposed two challenges; in the first, participants were given the topology and underlying biochemical structure of a 9-gene regulatory network and were asked to determine its parameter values. In the second challenge, participants were given an incomplete topology with 11 genes and asked to find three missing links in the model. In both challenges, a budget was provided to buy experimental data generated in silico with the model and mimicking the features of different common experimental techniques, such as microarrays and fluorescence microscopy. Data could be bought at any stage, allowing participants to implement an iterative loop of experiments and computation.ConclusionsA total of 19 teams participated in this competition. The results suggest that the combination of state-of-the-art parameter estimation and a varied set of experimental methods using a few datasets, mostly fluorescence imaging data, can accurately determine parameters of biochemical models of gene regulation. However, the task is considerably more difficult if the gene network topology is not completely defined, as in challenge 2. Importantly, we found that aggregating independent parameter predictions and network topology across submissions creates a solution that can be better than the one from the best-performing submission.
Bioinformatics | 2013
Carito Guziolowski; Santiago Videla; Federica Eduati; Sven Thiele; Thomas Cokelaer; Anne Siegel; Julio Saez-Rodriguez
Motivation: Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models. This, however, is essential to provide precise insight in the mechanisms underlaying signal transduction and generate reliable predictions. Results: We propose the use of Answer Set Programming to explore exhaustively the space of feasible logic models. Toward this end, we have developed caspo, an open-source Python package that provides a powerful platform to learn and characterize logic models by leveraging the rich modeling language and solving technologies of Answer Set Programming. We illustrate the usefulness of caspo by revisiting a model of pro-growth and inflammatory pathways in liver cells. We show that, if experimental error is taken into account, there are thousands (11 700) of models compatible with the data. Despite the large number, we can extract structural features from the models, such as links that are always (or never) present or modules that appear in a mutual exclusive fashion. To further characterize this family of models, we investigate the input–output behavior of the models. We find 91 behaviors across the 11 700 models and we suggest new experiments to discriminate among them. Our results underscore the importance of characterizing in a global and exhaustive manner the family of feasible models, with important implications for experimental design. Availability: caspo is freely available for download (license GPLv3) and as a web service at http://caspo.genouest.org/. Supplementary information: Supplementary materials are available at Bioinformatics online. Contact: [email protected]
Bioinformatics | 2013
Thomas Cokelaer; Dennis Pultz; Lea M. Harder; Jordi Serra-Musach; Julio Saez-Rodriguez
Motivation: Web interfaces provide access to numerous biological databases. Many can be accessed to in a programmatic way thanks to Web Services. Building applications that combine several of them would benefit from a single framework. Results: BioServices is a comprehensive Python framework that provides programmatic access to major bioinformatics Web Services (e.g. KEGG, UniProt, BioModels, ChEMBLdb). Wrapping additional Web Services based either on Representational State Transfer or Simple Object Access Protocol/Web Services Description Language technologies is eased by the usage of object-oriented programming. Availability and implementation: BioServices releases and documentation are available at http://pypi.python.org/pypi/bioservices under a GPL-v3 license. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Molecular Systems Biology | 2014
Stefania Vaga; Marti Bernardo-Faura; Thomas Cokelaer; Alessio Maiolica; Christopher A. Barnes; Ludovic C. Gillet; Björn Hegemann; Frank van Drogen; Hoda Sharifian; Edda Klipp; Matthias Peter; Julio Saez-Rodriguez; Ruedi Aebersold
Cells respond to environmental stimuli via specialized signaling pathways. Concurrent stimuli trigger multiple pathways that integrate information, predominantly via protein phosphorylation. Budding yeast responds to NaCl and pheromone via two mitogen‐activated protein kinase cascades, the high osmolarity, and the mating pathways, respectively. To investigate signal integration between these pathways, we quantified the time‐resolved phosphorylation site dynamics after pathway co‐stimulation. Using shotgun mass spectrometry, we quantified 2,536 phosphopeptides across 36 conditions. Our data indicate that NaCl and pheromone affect phosphorylation events within both pathways, which thus affect each other at more levels than anticipated, allowing for information exchange and signal integration. We observed a pheromone‐induced down‐regulation of Hog1 phosphorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct Ste20 and Pbs2 phosphosites responded differently to the two stimuli, suggesting these proteins as key mediators of the information exchange. A set of logic models was then used to assess the role of measured phosphopeptides in the crosstalk. Our results show that the integration of the response to different stimuli requires complex interconnections between signaling pathways.
Cancer Research | 2017
Federica Eduati; Victoria Doldàn-Martelli; Bertram Klinger; Thomas Cokelaer; Anja Sieber; Fiona Kogera; Mathurin Dorel; Mathew J. Garnett; Nils Blüthgen; Julio Saez-Rodriguez
Genomic features are used as biomarkers of sensitivity to kinase inhibitors used widely to treat human cancer, but effective patient stratification based on these principles remains limited in impact. Insofar as kinase inhibitors interfere with signaling dynamics, and, in turn, signaling dynamics affects inhibitor responses, we investigated associations in this study between cell-specific dynamic signaling pathways and drug sensitivity. Specifically, we measured 14 phosphoproteins under 43 different perturbed conditions (combinations of 5 stimuli and 7 inhibitors) in 14 colorectal cancer cell lines, building cell line-specific dynamic logic models of underlying signaling networks. Model parameters representing pathway dynamics were used as features to predict sensitivity to a panel of 27 drugs. Specific parameters of signaling dynamics correlated strongly with drug sensitivity for 14 of the drugs, 9 of which had no genomic biomarker. Following one of these associations, we validated a drug combination predicted to overcome resistance to MEK inhibitors by coblockade of GSK3, which was not found based on associations with genomic data. These results suggest that to better understand the cancer resistance and move toward personalized medicine, it is essential to consider signaling network dynamics that cannot be inferred from static genotypes. Cancer Res; 77(12); 3364-75. ©2017 AACR.