Thomas D. Donnelly
Harvey Mudd College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas D. Donnelly.
Physics of Fluids | 2004
Thomas D. Donnelly; J. Hogan ; Andrew Mugler; N. Schommer ; M. Schubmehl ; Andrew J. Bernoff; B. Forrest
In the last 10 years, laser-driven fusion experiments performed on atomic clusters of deuterium have shown a surprisingly high neutron yield per joule of input laser energy. Results indicate that the optimal cluster size for maximizing fusion events should be in the 0.01‐1 mm diameter range, but an appropriate source of droplets of this size does not exist. In an attempt to meet this need, we use ultrasonic atomization to generate micron-scale droplet aerosols of high average density, and we have developed and refined a reliable droplet sizing technique based on Mie scattering. Harmonic excitation of the fluid in the MHz range yields an aerosol of droplets with diameters of a few microns. The droplet diameter distribution is well-peaked and the relationship between average droplet size and forcing frequency follows an inviscid scaling law, predictable by dimensional analysis and consistent with the linear theory for Faraday excitation of an infinitely deep fluid.
American Journal of Physics | 2001
I. Weiner ; M. Rust ; Thomas D. Donnelly
A technique for determining the size of microscopic spherical particles using light scattering is presented as an undergraduate physics lab. Scatterer size is determined from angular scattering distribution measurements of laser light scattered from a dilute suspension of latex spheres with diameters of 4.99±0.05 and 6.038±0.045 μm. Previous experiments of this type used approximate theoretical corrections and required the construction of specialized sample cells to minimize complicating effects. As a significant improvement to these, we generate angular scattering distributions from Mie theory and, using an accurate numerical procedure, correct these distributions for Snell’s law and foreshortening effects. Scatterer size is then determined using a fast, robust fitting algorithm to compare these corrected angular scattering distributions to measured angular scattering distributions. We fit the scatter from a solution of 6.04-μm-diam spheres to spheres of 5.95±0.11 μm diameter, and that from a solution of...
Review of Scientific Instruments | 2005
Thomas D. Donnelly; J. Hogan ; Andrew Mugler; M. Schubmehl ; N. Schommer ; Andrew J. Bernoff; S. Dasnurkar; T. Ditmire
A device that uses ultrasonic atomization of a liquid to produce an aerosol of micron-scale droplets is described. This device represents a new approach to producing targets relevant to laser-driven fusion studies, and to rare studies of nonlinear optics in which wavelength-scale targets are irradiated. The device has also made possible tests of fluid dynamics models in a novel phase space. The distribution of droplet sizes produced by the device and the threshold power required for droplet production are shown to follow scaling laws predicted by fluid dynamics.
Physics of Plasmas | 2007
H. A. Sumeruk; S. Kneip; D. R. Symes; I.V. Churina; A. V. Belolipetski; G. Dyer; J. Landry; G. Bansal; Aaron Bernstein; Thomas D. Donnelly; Anupam Karmakar; A. Pukhov; T. Ditmire
Hot electron and x-ray production from solid targets coated with polystyrene-spheres which are irradiated with high-contrast, 100fs, 400nm light pulses at intensity up to 2×1017W∕cm2 have been studied. The peak hard x-ray signal from uncoated fused silica targets is an order of magnitude smaller than the signal from targets coated with submicron sized spheres. The temperature of the x-rays in the case of sphere-coated targets is twice as hot as that of uncoated glass. A sphere-size scan of the x-ray yield and observation of a peak in both the x-ray production and temperature at a sphere diameter of 0.26μm, indicate that these results are consistent with Mie enhancements of the laser field at the sphere surface and multipass stochastic heating of the hot electrons in the oscillating laser field. These results also match well with particle-in-cell simulations of the interaction.
Optics Letters | 1999
K. L. Moore ; Thomas D. Donnelly
Second-harmonic radiation is generated at a gold surface by use of a laser pulse that is varied in duration from 14 to 29 fs and in intensity from 10(9) to 10(11)W/cm(2) . At laser intensities below 10(10)W/cm(2) , the second-harmonic signal has the expected quadratic dependence on pump-laser intensity; however, at higher intensities, the dependence is supraquadratic. This difference arises because the leading edge of the laser pulse interacts significantly with the gold electrons to create a nonequilibrium, photoexcited distribution. The second-harmonic generation process occurs before electron-electron or electron-phonon collisions can equilibrate the distribution and therefore serves as a probe of the nonequilibrium distribution.
Review of Scientific Instruments | 2015
C. J. Price; Thomas D. Donnelly; S. Giltrap; N. H. Stuart; Susan Parker; S. Patankar; H. F. Lowe; D. Drew; E. T. Gumbrell; R. A. Smith
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10(17) W cm(-2)) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.
ACS Applied Materials & Interfaces | 2010
Ian K. Wright ; Andrew P. Higginbotham ; Shenda M. Baker; Thomas D. Donnelly
We demonstrate the operation of a device that can produce chitosan nanoparticles in a tunable size range from 50-300 nm with small size dispersion. A piezoelectric oscillator operated at megahertz frequencies is used to aerosolize a solution containing dissolved chitosan. The solvent is then evaporated from the aerosolized droplets in a heat pipe, leaving monodisperse nanoparticles to be collected. The nanoparticle size is controlled both by the concentration of the dissolved polymer and by the size of the aerosol droplets that are created. Our device can be used with any polymer or polymer/therapeutic combination that can be prepared in a homogeneous solution and vaporized.
Review of Scientific Instruments | 2009
Andrew P. Higginbotham ; O. Semonin ; S. Bruce ; C. Chan ; M. Maindi ; Thomas D. Donnelly; M. Maurer; W. Bang; I.V. Churina; Jens Osterholz; I. Kim; Aaron Bernstein; T. Ditmire
We have developed a tunable source of Mie scale microdroplet aerosols that can be used for the generation of energetic ions. To demonstrate this potential, a terawatt Ti:Al2O3 laser focused to 2 x 10(19) W/cm2 was used to irradiate heavy water (D2O) aerosols composed of micron-scale droplets. Energetic deuterium ions, which were generated in the laser-droplet interaction, produced deuterium-deuterium fusion with approximately 2 x 10(3) fusion neutrons measured per joule of incident laser energy.
Journal of the Acoustical Society of America | 2011
Andrew P. Higginbotham ; Aaron Guillen ; Nathan C. Jones ; Thomas D. Donnelly; Andrew J. Bernoff
A popular method for generating micron-sized aerosols is to submerge ultrasonic (ω~MHz) piezoelectric oscillators in a water bath. The submerged oscillator atomizes the fluid, creating droplets with radii proportional to the wavelength of the standing wave at the fluid surface. Classical theory for the Faraday instability predicts a parametric instability driving a capillary wave at the subharmonic (ω/2) frequency. For many applications it is desirable to reduce the size of the droplets; however, using higher frequency oscillators becomes impractical beyond a few MHz. Observations are presented that demonstrate that smaller droplets may also be created by increasing the driving amplitude of the oscillator, and that this effect becomes more pronounced for large driving frequencies. It is shown that these observations are consistent with a transition from droplets associated with subharmonic (ω/2) capillary waves to harmonic (ω) capillary waves induced by larger driving frequencies and amplitudes, as predicted by a stability analysis of the capillary waves.
Journal of The Optical Society of America B-optical Physics | 2003
J. Z. Sanborn ; C. Hellings ; Thomas D. Donnelly
By numerically solving the nonlinear field equations, we simulate second-harmonic generation by laser pulses within a nonlinear medium without making the usual slowly-varying-amplitude approximation, an approximation which may fail when laser pulses of moderate intensity or ultrashort duration are used to drive a nonlinear process. Under these conditions we show that a backward-traveling, second-harmonic wave is created, and that the magnitude of this wave is indicative of the breakdown of the slowly-varying-amplitude approximation. Conditions necessary for experimental detection of this wave are discussed.