Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas D. Lorenson is active.

Publication


Featured researches published by Thomas D. Lorenson.


Ecological Monographs | 2009

Sensitivity of the carbon cycle in the Arctic to climate change

A. David McGuire; Leif G. Anderson; Torben R. Christensen; Scott R. Dallimore; Laodong Guo; Daniel J. Hayes; Martin Heimann; Thomas D. Lorenson; Robie W. Macdonald; Nigel T. Roulet

The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon-climate modeling efforts. (Less)


Earth and Planetary Science Letters | 1998

Chemistry, isotopic composition, and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone

Miriam Kastner; Keith A. Kvenvolden; Thomas D. Lorenson

Abstract Although the presence of extensive gas hydrate on the Cascadia margin, offshore from the western U.S. and Canada, has been inferred from marine seismic records and pore water chemistry, solid gas hydrate has only been found at one location. At Ocean Drilling Program (ODP) Site 892, offshore from central Oregon, gas hydrate was recovered close to the sediment-water interface at 2–19 m below the seafloor (mbsf) at 670 m water depth. The gas hydrate occurs as elongated platy crystals or crystal aggregates, mostly disseminated irregularly, with higher concentrations occurring in discrete zones, thin layers, and/or veinlets parallel or oblique to the bedding. A 2- to 3-cm thick massive gas hydrate layer, parallel to bedding, was recovered at ∼ 17 mbsf. Gas from a sample of this layer was composed of both CH4 and H2S. This sample is the first mixed-gas hydrate of CH4 H2S documented in ODP; it also contains ethane and minor amounts of CO2. Measured temperatures of the recovered core ranged from 2 to −1.8°C and are 6 to 8 degrees lower than in-situ temperatures. These temperature anomalies were caused by the partial dissociation of the CH4 H2S hydrate during recovery without a pressure core sampler.During this dissociation, toxic levels of H2S (δ34S, +27.4‰) were released. The δ13C values of the CH4 in the gas hydrate, −64.5 to −67.5‰(PDB), together with δD values of −197 to −199‰(SMOW) indicate a primarily microbial source for the CH4. The δ18O value of the hydrate H2O is +2.9‰(SMOW), comparable with the experimental fractionation factor for sea-ice. The unusual composition (CH4 H2S) and depth distribution (2–19 mbsf) of this gas hydrate indicate mixing between a methane-rich fluid with a pore fluid enriched in sulfide; at this site the former is advecting along an inclined fault into the active sulfate reduction zone. The facts that the CH4 H2S hydrate is primarily confined to the present day active sulfate reduction zone (2–19 mbsf), and that from here down to the BSR depth (19–68 mbsf) the gas hydrate inferred to exist is a ≥99% CH4 hydrate, suggest that the mixing of CH4 and H2S is a geologically young process. Because the existence of a mixed CH4 H2S hydrate is indicative of moderate to intense advection of a methane-rich fluid into a near surface active sulfate reduction zone, tectonically active (faulted) margins with organic-rich sediments and moderate to high sedimentation rates are the most likely regions of occurrence. The extension of such a mixed hydrate below the sulfate reduction zone should reflect the time-span of methane advection into the sulfate reduction zone.


Journal of Autoimmunity | 2003

Induction of lupus autoantibodies by adjuvants

Minoru Satoh; Yoshiki Kuroda; Hideo Yoshida; Krista M. Behney; Akiei Mizutani; Jun Akaogi; Dina C. Nacionales; Thomas D. Lorenson; Robert J. Rosenbauer; Westley H. Reeves

Exposure to the hydrocarbon oil pristane induces lupus specific autoantibodies in non-autoimmune mice. We investigated whether the capacity to induce lupus-like autoimmunity is a unique property of pristane or is shared by other adjuvant oils. Seven groups of 3-month-old female BALB/cJ mice received a single intraperitoneal injection of pristane, squalene (used in the adjuvant MF59), incomplete Freunds adjuvant (IFA), three different medicinal mineral oils, or saline, respectively. Serum autoantibodies and peritoneal cytokine production were measured. In addition to pristane, the mineral oil Bayol F (IFA) and the endogenous hydrocarbon squalene both induced anti-nRNP/Sm and -Su autoantibodies (20% and 25% of mice, respectively). All of these hydrocarbons had prolonged effects on cytokine production by peritoneal APCs. However, high levels of IL-6, IL-12, and TNFalpha production 2-3 months after intraperitoneal injection appeared to be associated with the ability to induce lupus autoantibodies. The ability to induce lupus autoantibodies is shared by several hydrocarbons and is not unique to pristane. It correlates with stimulation of the production of IL-12 and other cytokines, suggesting a relationship with a hydrocarbons adjuvanticity. The potential to induce autoimmunity may complicate the use of oil adjuvants in human and veterinary vaccines.


Geo-marine Letters | 1993

Gas hydrates from the continental slope, offshore Sakhalin Island, Okhotsk Sea

G. D. Ginsburg; V. A. Soloviev; R. E. Cranston; Thomas D. Lorenson; Keith A. Kvenvolden

Ten gas-vent fields were discovered in the Okhotsk Sea on the northeast continental slope offshore from Sakhalin Island in water depths of 620—1040 m. At one vent field, estimated to be more than 250 m across, gas hydrates, containing mainly microbial methane (δ13C = −64.3‰), were recovered from subbottom depths of 0.3–1.2 m. The sediment, having lenses and bedded layers of gas hydrate, contained 30–40% hydrate per volume of wet sediment. Although gas hydrates were not recovered at other fields, geochemical and thermal measurements suggest that gas hydrates are present.


Geology | 2006

Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California

James R. Hein; William R. Normark; Brandie R. McIntyre; Thomas D. Lorenson; Charles L. Powell

Methane and hydrogen sulfide vent from a cold seep above a shallowly buried methane hydrate in a mud volcano located 24 km offshore southern California in 800 m of water. Bivalves, authigenic calcite, and methane hydrate were recovered in a 2.1 m piston core. Aragonite shells of two bivalve species are unusually depleted in 13C (to −19‰ δ13C), the most 13C-depleted shells of marine macrofauna yet discovered. Carbon isotopes for both living and dead specimens indicate that they used, in part, carbon derived from anaerobically oxidized methane to construct their shells. The δ13C values are highly variable, but most are within the range −12‰ to −19‰. This variability may be diagnostic for identifying cold-seep–hydrate systems in the geologic record. Authigenic calcite is abundant in the cores down to ∼1.5 m subbottom, the top of the methane hydrate. The calcite is depleted in 13C (δ13C = −46‰ to −58‰), indicating that carbon produced by anaerobically oxidized methane is the main source of the calcite. Methane sources include a geologic hydrocarbon reservoir from Miocene source rocks, and biogenic and thermogenic degradation of organic matter in basin sediments. Oxygen isotopes indicate that most calcite formed out of isotopic equilibrium with ambient bottom water, under the influence of gas hydrate dissociation and strong methane flux. High metal content in the mud volcano sediment indicates leaching of basement rocks by fluid circulating along an underlying fault, which also allows for a high flux of fossil methane.


Marine Geology | 2002

Pockmarks off Big Sur, California

Charles K. Paull; William Ussler; Norman Maher; H. G. Greene; Gregor Rehder; Thomas D. Lorenson; Homa Lee

A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ∼1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8–12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique (∼45 000 yr BP), with a sedimentation rate of ∼10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface (∼100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45 000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events.


Marine Environmental Research | 2003

Temporal and spatial distributions of contaminants in sediments of Santa Monica Bay, California

Steven M. Bay; Eddy Y. Zeng; Thomas D. Lorenson; Kim Tran; Clark R. Alexander

Contaminant inputs from wastewater discharge, a major source of contamination to Santa Monica Bay (SMB), have declined drastically during the last three decades as a result of improved treatment processes and better source control. To assess the concomitant temporal changes in the SMB sediments, a study was initiated in June 1997, in which 25 box cores were collected using a stratified random sampling design. Five sediment strata corresponding to the time intervals of 1890-1920, 1932-1963, 1965-1979, 1979-1989, and 1989-1997 were identified using (210)Pb dating techniques. Samples from each stratum were analyzed for metals, 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites (DDTs), polychlorinated biphenyls (PCBs), and total organic carbon (TOC). Samples from the 1965-1979, 1979-1989, and 1989-1997 strata were also analyzed for polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs). Sediment metal concentrations increased from 1890-1979 and were similar during the time intervals of 1965-1979, 1979-1989, and 1989-1997, although the mass emissions of trace metals from sewage inputs declined substantially during the same time period. Trace organic contamination in SMB was generally highest in sediments corresponding to deposition during the years of 1965-1979 or 1979-1989 and showed a decline in concentration in the 1989-1997 stratum. Temporal trends of contamination were greatest in sediments collected from areas near the Hyperion Treatment Plant (HTP) outfall system and on the slope of Redondo Canyon. The highest contaminant concentrations were present in sediments near the HTP 7-mile outfall in the 1965-1979 stratum. Elevated trace metal and organic concentrations were still present in the 1989-1997 stratum of most stations, suggesting that sediment contaminants have moved vertically in the sediment column since sludge discharges from the 7-mile outfall (a dominant source of contamination to the bay) ceased in 1987. The widespread distributions of DDTs and PCBs in SMB and highly confined distribution of LABs around the HTP outfall system were indicative of a dispersal mechanism remobilizing historically deposited contaminants to areas relatively remote from the point of discharge.


Geophysical Research Letters | 1993

The Beaufort Sea continental shelf as a seasonal source of atmospheric methane

Keith A. Kvenvolden; Marvin D. Lilley; Thomas D. Lorenson; Peter W. Barnes; Elizabeth McLaughlin

Methane concentrations in the Beaufort Sea under the winter ice canopy offshore from northern Alaska are 3 to 28 times greater than they are in late summer when the ice is absent in a similar region offshore from northern Canada where methane is in approximate equilibrium with the atmosphere. These observations suggest that methane concentrates in the water under the sea-ice cover during winter and ventilates rapidly in late summer as the ice melts and retreats. Conditions similar to those on the Beaufort Sea shelf likely exist on the much larger Siberian shelf, making the Arctic Ocean margin a possible seasonal, high-latitude, marine source of about 0.1 Tg yr[sup [minus]1] atmospheric methane. The small addition of methane likely contributes to the late-summer increase in atmospheric methane that is observed each year particularly in the northern hemisphere. 32 refs., 2 figs.


AAPG Bulletin | 2008

Families of Miocene Monterey crude oil, seep, and tarball samples, coastal California

Kenneth E. Peters; Frances D. Hostettler; Thomas D. Lorenson; Robert J. Rosenbauer

Biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs to better assess their origins and distributions in coastal California. These samples were used to construct a chemometric (multivariate statistical) decision tree to classify 288 additional samples. The results identify three tribes of 13C-rich oil samples inferred to originate from thermally mature equivalents of the clayey-siliceous, carbonaceous marl and lower calcareous-siliceous members of the Monterey Formation at Naples Beach near Santa Barbara. An attempt to correlate these families to rock extracts from these members in the nearby COST (continental offshore stratigraphic test) (OCS-Cal 78-164) well failed, at least in part because the rocks are thermally immature. Geochemical similarities among the oil tribes and their widespread distribution support the prograding margin model or the banktop-slope-basin model instead of the ridge-and-basin model for the deposition of the Monterey Formation. Tribe 1 contains four oil families having geochemical traits of clay-rich marine shale source rock deposited under suboxic conditions with substantial higher plant input. Tribe 2 contains four oil families with traits intermediate between tribes 1 and 3, except for abundant 28,30-bisnorhopane, indicating suboxic to anoxic marine marl source rock with hemipelagic input. Tribe 3 contains five oil families with traits of distal marine carbonate source rock deposited under anoxic conditions with pelagic but little or no higher plant input. Tribes 1 and 2 occur mainly south of Point Conception in paleogeographic settings where deep burial of the Monterey source rock favored petroleum generation from all three members or their equivalents. In this area, oil from the clayey-siliceous and carbonaceous marl members (tribes 1 and 2) may overwhelm that from the lower calcareous-siliceous member (tribe 3) because the latter is thinner and less oil-prone than the overlying members. Tribe 3 occurs mainly north of Point Conception where shallow burial caused preferential generation from the underlying lower calcareous-siliceous member or another unit with similar characteristics. In a test of the decision tree, 10 tarball samples collected from beaches in Monterey and San Mateo counties in early 2007 were found to originate from natural seeps representing different organofacies of Monterey Formation source rock instead from one anthropogenic pollution event. The seeps apparently became more active because of increased storm activity.


FEMS Microbiology Ecology | 2012

Bacterial dominance in subseafloor sediments characterized by methane hydrates

Brandon R. Briggs; Fumio Inagaki; Yuki Morono; Taiki Futagami; Carme Huguet; Antoni Rosell-Melé; Thomas D. Lorenson; Frederick S. Colwell

The degradation of organic carbon in subseafloor sediments on continental margins contributes to the largest reservoir of methane on Earth. Sediments in the Andaman Sea are composed of ~ 1% marine-derived organic carbon and biogenic methane is present. Our objective was to determine microbial abundance and diversity in sediments that transition the gas hydrate occurrence zone (GHOZ) in the Andaman Sea. Microscopic cell enumeration revealed that most sediment layers harbored relatively low microbial abundance (10(3)-10(5) cells cm(-3)). Archaea were never detected despite the use of both DNA- and lipid-based methods. Statistical analysis of terminal restriction fragment length polymorphisms revealed distinct microbial communities from above, within, and below the GHOZ, and GHOZ samples were correlated with a decrease in organic carbon. Primer-tagged pyrosequences of bacterial 16S rRNA genes showed that members of the phylum Firmicutes are predominant in all zones. Compared with other seafloor settings that contain biogenic methane, this deep subseafloor habitat has a unique microbial community and the low cell abundance detected can help to refine global subseafloor microbial abundance.

Collaboration


Dive into the Thomas D. Lorenson's collaboration.

Top Co-Authors

Avatar

Keith A. Kvenvolden

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Rosenbauer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William Ussler

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar

Florence L. Wong

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Timothy S. Collett

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Frances D. Hostettler

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William J. Winters

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Patrick E. Hart

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge