Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas D. McKnight is active.

Publication


Featured researches published by Thomas D. McKnight.


Chromosoma | 1996

Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors

Robert E. Hanson; M. N. Islam-Faridi; E. A. Percival; Charles F. Crane; Yuanfu Ji; Thomas D. McKnight; David M. Stelly; H. J. Price

The most widely cultivated species of cotton,Gossypium hirsutum, is a disomic tetraploid (2n=4x=52). It has been proposed previously that extant A- and D-genome species are most closely related to the diploid progenitors of the tetraploid. We used fluorescent in situ hybridization (FISH) to determine the distribution of 5S and 18S-28S rDNA loci in the A-genome speciesG. herbaceum andG. arboreum, the D-genome speciesG. raimondii andG. thurberi, and the AD tetraploidG. hirsutum. High signal-to-noise, single-label FISH was used to enumerate rDNA loci, and simultaneous, dual-label FISH was used to determine the syntenic relationships of 5S rDNA loci relative to 18S–28S rDNA loci. These techniques provided greater sensitivity than our previous methods and permitted detection of six newG. hirsutum 18S–28S rDNA loci, bringing the total number of observed loci to 11. Differences in the intensity of the hybrizization signal at these loci allowed us to designate them as major, intermediate, or minor 18–28S loci. Using genomic painting with labeled A-genome DNA, five 18S–28S loci were localized to theG. hirsutum A-subgenome and six to the D-subgenome. Four of the 11 18S–28S rDNA loci inG. hirsutum could not be accounted for in its presumed diploid progenitors, as both A-genome species has three loci and both D-genome species had four.G. hirsutum has two 5S rDNA loci, both of which are syntenic to major 18S–28S rDNA loci. All four of the diploid genomes wer examined contained a single 5S locus. InG. herbaceum (A1) andG. thurberi (D1), the 5S locus is syntenic to a major 18S–28S locus, but inG. arboreum (A2) andG. raimondii (D5), the proposed D-genome progenitor ofG. hirsutum, the 5S loci are syntenic tominor and intermediate 18S–28S loci, respecitively. The multiplicity, variation in size and site number, and lack of additivity between the tetraploid species and its putative diploid ancestors indicate that the behavior of rDNA loci in cotton is nondogmatic, and considerably more complex and dynamic than previously envisioned. The relative variability of 18S–28S rDNA loci versus 5S rDNA loci suggests that the behavior of tandem repearts can differ widely.


Plant Molecular Biology | 1987

Segregation of genes transferred to one plant cell from two separate Agrobacterium strains

Thomas D. McKnight; Marcella T. Lillis; Robert B. Simpson

Agrobacterium tumefaciens and Agrobacterium rhizogenes are soil bacteria which transfer DNA (T-DNA) to plant cells. Two Agrobacterium strains, each with a different T-DNA, can infect plants and give rise to transformed tissue which has markers from both T-DNAs. Although marker genes from both T-DNAs are in the tissue, definitive proof that the tissue is a cellular clone and that both T-DNAs are in a single cell is necessary to demonstrate cotransformation. We have transferred two distinguishable T-DNAs, carried on binary vectors in separate Agrobacterium rhizogenes strains, into tomato cells and have recovered hairy roots which received both T-DNAs. Continued expression of marker genes from each T-DNA in hairy roots propagated from individual root tips indicated that both T-DNAs were present in a single meristem. Also, we have transferred the two different T-DNAs, carried on identical binary vector plasmids in separate Agrobacterium tumefaciens strains, into tobacco cells and recovered plants which received both T-DNAs. Transformed plants with marker genes from each T-DNA were outcrossed to wild-type tobacco plants. Distribution of the markers in the F1 generation from three cotransformed plants of independent origin showed that both T-DNAs in the plants must have been present in the same cell and that the T-DNAs were genetically unlinked. Cotransformation of plant cells with T-DNAs from two bacterial strains and subsequent segregation of the transferred genes should be useful for altering the genetic content of higher plants.


Plant Molecular Biology | 1986

A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes : Frequent co-transformation of two distinct T-DNAs.

Robert B. Simpson; Albert Spielmann; Linda Joyce Margossian; Thomas D. McKnight

SummaryBinary Ti plasmid vector systems consist of two plasmids in Agrobacterium, where one plasmid contains the DNA that can be transferred to plant cells and the other contains the virulence (vir) genes which are necessary for the DNA transfer but are not themselves stably transferred. We have constructed two nononcogenic vectors (pARC4 and pARC8) based on the binary Ti plasmid system of Agrobacterium tumefaciens for plant transformation. Each vector contains the left and right termini sequences from pTiT37. These sequences, which determine the extent of DNA transferred to plant cells, flank unique restriction enzyme sites and a marker gene that functions in the plant (nopaline synthase in pARC4 or neomycin phosphotransferase in pARC8). After construction in vitro, the vectors can be conjugatively transferred from E. coli to any of several Agrobacterium strains containing vir genes. Using A. rhizogenes strain A4 containing the resident Ri plasmid plus a vector with the nopaline synthase marker, we found that up to 50% of the hairy roots resulting from the infection of alfalfa or tomato synthesized nopaline. Thus, vector DNA encoding an unselected marker was frequently co-transferred with Ri plasmid DNA to an alfalfa or a tomato cell. In contrast, the frequency of co-transfer to soybean cells was difficult to estimate because we encountered a high background of non-transformed roots using this species. Up to five copies of the vector DNA between the termini sequences were faithfully transferred and maintained in most cases suggesting that the termini sequences and the vir genes from the Ri and Ti plasmids are functionally equivalent.


PLOS ONE | 2012

Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species.

Elsa Góngora-Castillo; Kevin L. Childs; Greg Fedewa; John P. Hamilton; David K. Liscombe; Maria Magallanes-Lundback; Kranthi K. Mandadi; Ezekiel Nims; Weerawat Runguphan; Brieanne Vaillancourt; Marina Varbanova-Herde; Dean DellaPenna; Thomas D. McKnight; Sarah E. O’Connor; C. Robin Buell

The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for understanding plant specialized metabolism, and promotes realization of innovative production systems for plant-derived pharmaceuticals.


Planta | 1991

Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants.

Thomas D. McKnight; Daniel R. Bergey; Ronald J. Burnett; Craig L. Nessler

Strictosidine, a precursor to over 1000 indole alkaloids including the anti-tumor drugs vinblastine, vincristine, and camptothecin, is produced by the condensation of tryptamine and secologanin. Strictosidine synthase, the enzyme responsible for this condensation, is the first committed step in the indole-alkaloid pathway. We have introduced a modified cDNA encoding Strictosidine synthase from Catharanthus roseus (L.) Don. (McKnight et al. 1990, Nucl. Acids Res. 18, 4939) driven by the CaMV 35S promoter into tobacco (Nicotiana tabacum L.). Transgenic tobacco plants expressing this construct had from 3 to 22 times greater strictosidinesynthase activity than C. roseus plants. Ultrastructural immunolocalization demonstrated that strictosidine synthase is a vacuolar protein in C. roseus and is correctly targeted to the vacuole in transgenic tobacco. Immunoblot analysis of strictosidine synthase showed that two distinct forms of the enzyme were produced in transgenic tobacco plants but that only a single form was made in C. roseus. This observation indicates that the second form of the protein is not simply a result of overexpression in tobacco, but may reflect differences in protein processing between tobacco and C. roseus.


Plant Physiology | 1993

Expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate.

Ronald J. Burnett; Ignacio E. Maldonado-Mendoza; Thomas D. McKnight; Craig L. Nessler

We have isolated a gene, hmg1, for 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) from Camptotheca acuminata, a Chinese tree that produces the anti-cancer monoterpenoid indole alkaloid camptothecin (CPT). HMGR supplies mevalonate for the synthesis of the terpenoid component of CPT as well as for the formation of many other primary and secondary metabolites. In Camptotheca, hmg1 transcripts were detected only in young seedlings and not in vegetative organs of older plants. Regulation of the hmg1 promoter was studied in transgenic tobacco using three translational fusions (-1678, -1107, -165) with the [beta]-glucuronidase (GUS) reporter gene. Histochemical analysis of plants containing each of the three promoter fusions showed similar developmental and spatial expression patterns. In vegetative tissues, GUS staining was localized to the epidermis of young leaves and stems, particularly in glandular trichomes. Roots showed intense staining in the cortical tissues in the elongation zone and light staining in the cortex of mature roots. hmg1::GUS expression was also observed in sepals, petals, pistils, and stamens of developing flowers, with darkest staining in the ovary wall, ovules, stigmas, and pollen. Leaf discs from plants containing each of the translational fusions showed a 15- to 20-fold wound induction of hmg1::GUS expression over 72 h; however, this increase in GUS activity was completely suppressed by treatment with methyl jasmonate. Taken together, these data show that a 165-bp fragment of Camptotheca hmg1promoter is sufficient to confer developmental regulation as well as wound induction and methyl jasmonate suppression of GUS expression in transgenic tobacco.


American Journal of Botany | 1998

Evolution of interspersed repetitive elements in Gossypium (Malvaceae)

Robert E. Hanson; Xinping Zhao; M. Nurul Islam-Faridi; Andrew H. Paterson; Michael S. Zwick; Charles F. Crane; Thomas D. McKnight; David M. Stelly; H. James Price

Very little is known regarding how repetitive elements evolve inpolyploid organisms. Here we address this subject by fluorescent insitu hybridization (FISH) of 20 interspersed repetitive elements tometaphase chromosomes of the cotton AD-genome tetraploid Gossypiumhirsutum and its putative A- and D-genome diploid ancestors. Theseelements collectively represent an estimated 18% of the G.hirsutum genome, and constitute the majority of high-copyinterspersed repetitive elements in G. hirsutum. Seventeen ofthe elements yielded FISH signals on chromosomes of both G.hirsutum subgenomes, while three were A-subgenome specific. Hybridization of eight selected elements, two of which were A-subgenomespecific, to the A(2) genome of G. arboreum yielded asignal distribution that was similar to that of the G. hirsutumA-subgenome. However, when hybridized to the D(5) genome ofG. raimondii, the putative diploid ancestor of the G.hirsutum D-subgenome, none of the probes, including elements thatstrongly hybridized to both G. hirsutum subgenomes, yieldeddetectable signal. The results suggest that the majority, although notall, G. hirsutum interspersed repetitive elements haveundergone intergenomic concerted evolution following polyploidizationand that this has involved colonization of the D-subgenome byA-subgenome elements and/or replacement of D-subgenome elements byelements of the A-subgenometype.


Plant Molecular Biology | 2002

Telomeres, telomerase, and stability of the plant genome

Thomas D. McKnight; Karel Riha; Dorothy E. Shippen

Telomeres, the complex nucleoprotein structures at the ends of linear eukaryotic chromosomes, along with telomerase, the enzyme that synthesizes telomeric DNA, are required to maintain a stable genome. Together, the enzyme and substrate perform this essential service by protecting chromosomes from exonucleolytic degradation and end-to-end fusions and by compensating for the inability of conventional DNA replication machinery to completely duplicate the ends of linear chromosomes. Telomeres are also important for chromosome organization within the nucleus, especially during mitosis and meiosis. The contributions of telomeres and telomerases to plant genome stability have been confirmed by analysis of Arabidopsis mutants that lack telomerase activity. These mutants have unstable genomes, but manage to survive up to ten generations with increasingly shortened telomeres and cytogenetic abnormalities. Comparisons between telomerase-deficient Arabidopsis and telomerase-deficient mice reveal distinct differences in the consequences of massive genome damage, probably reflecting the greater developmental and genomic plasticity of plants.


The Plant Cell | 2004

Plant Telomere Biology

Thomas D. McKnight; Dorothy E. Shippen

Analysis of telomeres, the nucleoprotein complexes that physically cap and protect the ends of eukaryotic chromosomes, has a long and intriguing history. The recent resurgence of plant telomere biology prompted us to recap this history to provide background and context for current investigations


Journal of Experimental Botany | 2012

The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana

Whitney D. Robinson; Joonho Park; Hue T. Tran; Hernan A. Del Vecchio; Sheng Ying; Jacqui L. Zins; Ketan Patel; Thomas D. McKnight; William C. Plaxton

Orthophosphate (Pi) is an essential but limiting macronutrient for plant growth. Extensive soil P reserves exist in the form of organic P (Po), which is unavailable for root uptake until hydrolysed by secretory acid phosphatases (APases). The predominant purple APase (PAP) isozymes secreted by roots of Pi-deficient (–Pi) Arabidopsis thaliana were recently identified as AtPAP12 (At2g27190) and AtPAP26 (At5g34850). The present study demonstrated that exogenous Po compounds such as glycerol-3-phosphate or herring sperm DNA: (i) effectively substituted for Pi in supporting the P nutrition of Arabidopsis seedlings, and (ii) caused upregulation and secretion of AtPAP12 and AtPAP26 into the growth medium. When cultivated under –Pi conditions or supplied with Po as its sole source of P nutrition, an atpap26/atpap12 T-DNA double insertion mutant exhibited impaired growth coupled with >60 and >30% decreases in root secretory APase activity and rosette total Pi concentration, respectively. Development of the atpap12/atpap26 mutant was unaffected during growth on Pi-replete medium but was completely arrested when 7-day-old Pi-sufficient seedlings were transplanted into a –Pi, Po-containing soil mix. Both PAPs were also strongly upregulated on root surfaces and in shoot cell-wall extracts of –Pi seedlings. It is hypothesized that secreted AtPAP12 and AtPAP26 facilitate the acclimation of Arabidopsis to nutritional Pi deficiency by: (i) functioning in the rhizosphere to scavenge Pi from the soil’s accessible Po pool, while (ii) recycling Pi from endogenous phosphomonoesters that have been leaked into cell walls from the cytoplasm. Thus, AtPAP12 and AtPAP26 are promising targets for improving crop P-use efficiency.

Collaboration


Dive into the Thomas D. McKnight's collaboration.

Researchain Logo
Decentralizing Knowledge