Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Delzant is active.

Publication


Featured researches published by Thomas Delzant.


Archive | 2005

Cuts in Kähler Groups

Thomas Delzant; Misha Gromov

We study fundamental groups of Kahler manifolds via their cuts or relative ends. Mathematics Subject Classification (2000). 32Q15, 20F65, 57M07.


Compositio Mathematica | 2012

Kahler groups, real hyperbolic spaces and the Cremona group. With an appendix by S. Cantat.

Thomas Delzant; Pierre Py

Generalizing a classical theorem of Carlson and Toledo, we prove that any Zariski dense isometric action of a Kahler group on the real hyperbolic space of dimension at least 3 factors through a homomorphism onto a cocompact discrete subgroup of PSL2(R). We also study actions of Kahler groups on infinite dimensional real hyper- bolic spaces, describe some exotic actions of PSL2(R) on these spaces, and give an application to the study of the Cremona group.


Topology | 2001

Accessibilité hiérarchique des groupes de présentation finie

Thomas Delzant; Leonid Potyagailo

Abstract We prove that a finitely presented group admits a finite hierarchy obtained by successive splittings along a family of elementary subgroups.


Annales de l'Institut Fourier | 1999

Sur l'accessibilité acylindrique des groupes de présentation finie

Thomas Delzant

Soient G un groupe, et τ un G-arbre, c’est-a-dire un arbre muni d’une action de G sans inversion d’aretes. Le probleme d’accessibilite est celui de donner une borne a priori au nombre de sommets de τ/G. Ce probleme a ete etudie par de nombreux auteurs : outre le celebre theoreme de Grushko sur les produit libres, citons les travaux de M. Dunwoody [Du], M. Bestvina et M. Feighn [BF], Z. Sela [S] et l’auteur [De1], [DP].


Groups, Geometry, and Dynamics | 2010

Codimension one subgroups and boundaries of hyperbolic groups

Thomas Delzant; Panos Papasoglu

We construct hyperbolic groups with the following properties: The boundary of the group has big dimension, it is separated by a Cantor set and the group does not split. This shows that Bowditchs theorem that characterizes splittings of hyperbolic groups over 2-ended groups in terms of the boundary can not be extended to splittings over more complicated subgroups.


arXiv: Group Theory | 2007

Homomorphic Images of Branch Groups, and Serre’s Property (FA)

Thomas Delzant; Rostislav Grigorchuk

It is shown that a finitely generated branch group has Serre’s property (FA) if and only if it does not surject onto the infinite cyclic group or the infinite dihedral group. An example of a finitely generated self-similar branch group surjecting onto the infinite cyclic group is constructed.


Archive | 1990

Géométrie et théorie des groupes

Michel Coornaert; Thomas Delzant; Athanase Papadopoulos


Duke Mathematical Journal | 1996

Sous-groupes distingués et quotients des groupes hyperboliques

Thomas Delzant


Archive | 1990

Géométrie et théorie des groupes : les groupes hyperboliques de Gromov

Michel Coornaert; Thomas Delzant; Athanase Papadopoulos


Journal of Topology | 2008

Courbure mésoscopique et théorie de la toute petite simplification

Thomas Delzant; Misha Gromov

Collaboration


Dive into the Thomas Delzant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athanase Papadopoulos

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Athanase Papadopoulos

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Misha Gromov

Institut des Hautes Études Scientifiques

View shared research outputs
Top Co-Authors

Avatar

Pierre Py

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Py

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Panos Papasoglu

National and Kapodistrian University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge