Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Dick is active.

Publication


Featured researches published by Thomas Dick.


Antimicrobial Agents and Chemotherapy | 2017

Rifabutin Is Active against Mycobacterium abscessus Complex

Dinah B. Aziz; Jian Liang Low; Mu-Lu Wu; Martin Gengenbacher; Jeanette W. P. Teo; Véronique Dartois; Thomas Dick

ABSTRACT Lung infections caused by Mycobacterium abscessus are emerging as a global threat to individuals with cystic fibrosis and to other patient groups. Recent evidence for human-to-human transmission worsens the situation. M. abscessus is an intrinsically multidrug-resistant pathogen showing resistance to even standard antituberculosis drugs, such as rifampin. Here, our objective was to identify existing drugs that may be employed for the treatment of M. abscessus lung disease. A collection of more than 2,700 approved drugs was screened at a single-point concentration against an M. abscessus clinical isolate. Hits were confirmed with fresh solids in dose-response experiments. For the most attractive hit, growth inhibition and bactericidal activities against reference strains of the three M. abscessus subspecies and a collection of clinical isolates were determined. Surprisingly, the rifampin derivative rifabutin had MICs of 3 ± 2 μM (3 μg/ml) against the screening strain, the reference strains M. abscessus subsp. abscessus ATCC 19977, M. abscessus subsp. bolletii CCUG 50184-T, and M. abscessus subsp. massiliense CCUG 48898-T, as well as against a collection of clinical isolates. Furthermore, rifabutin was active against clarithromycin-resistant strains. In conclusion, rifabutin, in contrast to rifampin, is active against the Mycobacterium abscessus complex bacteria in vitro and may be considered for treatment of M. abscessus lung disease.


Journal of Medicinal Chemistry | 2017

Amphiphilic Indole Derivatives as Antimycobacterial Agents: Structure–Activity Relationships and Membrane Targeting Properties

Tianming Yang; Wilfried Moreira; Samuel Agyei Nyantakyi; Huan Chen; Dinah B. Aziz; Mei-Lin Go; Thomas Dick

Antibacterials that disrupt cell membrane function have the potential to eradicate persister organisms and delay the emergence of resistance. Here we report the antimycobacterial activities of 4-fluoro and 6-methoxyindoles bearing a cationic amphiphilic motif represented by a lipophilic n-octyl side chain at position 1 and a positively charged azepanyl or 1,4-dioxa-8-azaspiro[4.5]decane moiety at position 3. These analogues exhibited balanced profiles of potency (Mycobacterium bovis BCG, M tuberculosis H37Rv), selective activity, solubility, and metabolic stability. Bacteriological mechanism of action investigations on a representative analogue revealed cell membrane permeabilization and depolarization in M bovis BCG. These membrane-related changes preceded cell death indicating that the loss in membrane integrity was not an epiphenomenon. Bactericidal activity was observed against both growing and nongrowing mycobacterial cultures. The analogue also upregulated cell envelope stress-inducible promoters piniBAC and pclgR, implicating the involvement of envelope-related targets in its mode of action.


Frontiers in Microbiology | 2017

Screening of TB Actives for Activity against Nontuberculous Mycobacteria Delivers High Hit Rates

Jian Liang Low; Mu-Lu Wu; Dinah B. Aziz; Benoît Laleu; Thomas Dick

The prevalence of lung disease due to infections with nontuberculous mycobacteria (NTM) has been increasing and surpassed tuberculosis (TB) in some countries. Treatment outcomes are often unsatisfactory, highlighting an urgent need for new anti-NTM medications. Although NTM in general do not respond well to TB specific drugs, the similarities between NTM and Mycobacterium tuberculosis at the molecular and cell structural level suggest that compound libraries active against TB could be leveraged for NTM drug discovery. Here we tested this hypothesis. The Pathogen Box from the Medicines for Malaria Venture (MMV) is a collection of 400 diverse drug-like compounds, among which 129 are known to be active against M. tuberculosis. By screening this compound collection against two NTM species, Mycobacterium abscessus and Mycobacterium avium, we showed that indeed the hit rates for NTM among TB active compounds is significantly higher compared to compounds that are not active against TB. MIC/dose response confirmation identified 10 top hits. Bactericidal activity determination demonstrated attractive potency for a subset of the confirmed hits. In vivo pharmacokinetic profiling showed that some of the compounds present reasonable starting points for medicinal chemistry programs. Three of the top hits were oxazolidinones, suggesting the potential for repositioning this class of protein synthesis inhibitors to replace linezolid which suffers from low potency. Two hits were inhibitors of the trehalose monomycolate transporter MmpL3, suggesting that this transmembrane protein may be an attractive target for NTM. Other hits are predicted to target a range of functions, including cell division (FtsZ), DNA gyrase (GyrB), dihydrofolate reductase, RNA polymerase and ABC transporters. In conclusion, our study showed that screening TB active compounds for activity against NTM resulted in high hit rates, suggesting that this may be an attractive approach to kick start NTM drug discovery projects. In addition, the work identified a series of novel high value NTM hits with associated candidate targets which can be followed up in hit-to-lead projects for the discovery of new NTM antibiotics.


Antimicrobial Agents and Chemotherapy | 2016

Missense mutations in the unfoldase ClpC1 of the caseinolytic protease complex are associated with pyrazinamide resistance in Mycobacterium tuberculosis

Michelle Yee; Pooja Gopal; Thomas Dick

ABSTRACT Previously, we showed that mutations in Mycobacterium tuberculosispanD, involved in coenzyme A biosynthesis, cause resistance against pyrazinoic acid, the bioactive component of the prodrug pyrazinamide. To identify additional resistance mechanisms, we isolated mutants resistant against pyrazinoic acid and subjected panD wild-type strains to whole-genome sequencing. Eight of the nine resistant strains harbored missense mutations in the unfoldase ClpC1 associated with the caseinolytic protease complex.


Antimicrobial Agents and Chemotherapy | 2017

Vancomycin and clarithromycin show synergy against Mycobacterium abscessus in vitro

Devika Mukherjee; Mu-Lu Wu; Jeanette W. P. Teo; Thomas Dick

ABSTRACT Lung disease caused by Mycobacterium abscessus is increasing, and current clarithromycin-based treatment regimens are only moderately effective. Here, we determined the effect of clarithromycin-vancomycin combination against M. abscessus complex isolates in vitro. Synergy was found with a fractional inhibitory concentration index (FICI) score of ≤0.5 and a 4- to 10-fold decrease in MIC.


Frontiers in Microbiology | 2018

Teicoplanin – Tigecycline Combination Shows Synergy Against Mycobacterium abscessus

Dinah B. Aziz; Jeanette W. P. Teo; Véronique Dartois; Thomas Dick

Lung disease caused by non-tuberculous mycobacteria (NTM), relatives of Mycobacterium tuberculosis, is increasing. M. abscessus is the most prevalent rapid growing NTM. This environmental pathogen is intrinsically resistant to most commonly used antibiotics, including anti-tuberculosis drugs. Current therapies take years to achieve cure, if cure if achieved. Thus, there is an urgent medical need to identify new, more efficacious treatments. Here, we explore the possibility of repurposing antibiotics developed for other indications. We asked whether novel two-drug combinations of clinically used antibiotics can be identified that show synergistic activity against this mycobacterium. An in vitro checkerboard titration assay was employed to test 180 dual combinations of 41 drugs against the clinical isolate M. abscessus Bamboo. The most attractive novel combination was further profiled against reference strains representing three sub-species (M. abscessus subsp. abscessus, massiliense and bolletii) and a collection of clinical isolates. This resulted in the identification of a novel synergistic antibiotic pair active against the M. abscessus complex: the glycopeptide teicoplanin with the glycylcycline tigecycline showed inhibitory activity at 2–3 μM (teicoplanin) and 1–2 μM (tigecycline). This novel combination can now be tested in M. abscessus animal models of infection and/or patients.


FEBS Journal | 2018

The NMR solution structure of Mycobacterium tuberculosis F‐ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine

Shin Joon; Priya Ragunathan; Lavanya Sundararaman; Wilson Nartey; Subhashri Kundu; Malathy Sony Subramanian Manimekalai; Nebojša Bogdanović; Thomas Dick; Gerhard Grüber

Mycobacterium tuberculosis (Mt) F1F0 ATP synthase (α3:β3:γ:δ:ε:a:b:b′:c9) is essential for the viability of growing and nongrowing persister cells of the pathogen. Here, we present the first NMR solution structure of Mtε, revealing an N‐terminal β‐barrel domain (NTD) and a C‐terminal domain (CTD) composed of a helix‐loop‐helix with helix 1 and ‐2 being shorter compared to their counterparts in other bacteria. The C‐terminal amino acids are oriented toward the NTD, forming a domain‐domain interface between the NTD and CTD. The Mtε structure provides a novel mechanistic model of coupling c‐ring‐ and ε rotation via a patch of hydrophobic residues in the NTD and residues of the CTD to the bottom of the catalytic α3β3‐headpiece. To test our model, genome site‐directed mutagenesis was employed to introduce amino acid changes in these two parts of the epsilon subunit. Inverted vesicle assays show that these mutations caused an increase in ATP hydrolysis activity and a reduction in ATP synthesis. The structural and enzymatic data are discussed in light of the transition mechanism of a compact and extended state of Mtε, which provides the inhibitory effects of this coupling subunit inside the rotary engine. Finally, the employment of these data with molecular docking shed light into the second binding site of the drug Bedaquiline.


European Journal of Medicinal Chemistry | 2018

1,3,5-triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity

Xuan Yang; Wassihun Wedajo; Yoshiyuki Yamada; Sue Li Dahlroth; Jason Jun Long Neo; Thomas Dick; Wai-Keung Chui

The emergence of multi- and extensively-drug resistant tubercular (MDR- and XDR-TB) strains of mycobacteria has limited the use of existing therapies, therefore new drugs are needed. Dihydrofolate reductase (DHFR) has recently attracted much attention as a target for the development of anti-TB agents. This study aimed to develop selective M.xa0tuberculosis DHFR inhibitors using rationale scaffolding design and synthesis, phenotype-oriented screening, enzymatic inhibitory study, whole cell on-target validation, molecular modeling, and inxa0vitro DMPK determination to derive new anti-TB agents. 2,4-diamino-1-phenyl-1,3,5-triazaspiro[5.5]undeca-2,4-dienes 20b and 20c were identified as selective M.xa0tuberculosis DHFR inhibitors, showing promising antimycobacterial activities (MIC50: 0.01xa0μM and MIC90: 0.025xa0μM on M.xa0tuberculosis H37Rv). This study provided compelling evidence that compound 20b and 20c exerted whole cell antimycobacterial activity through DHFR inhibition. In addition, these two compounds exhibited low cytotoxicity and low hemolytic activity. The inxa0vitro DMPK and physiochemical properties suggested their potential inxa0vivo efficacy.


mSphere | 2017

Mycobacterial Caseinolytic Protease Gene Regulator ClgR Is a Substrate of Caseinolytic Protease

Yoshiyuki Yamada; Thomas Dick

With 9 million new cases and more than 1 million deaths per year, tuberculosis, caused by Mycobacterium tuberculosis, is the biggest infectious disease killer globally. New drugs for the treatment of the drug-resistant forms of the disease are needed. Recently, a new target-lead couple, the mycobacterial protease ClpP1P2 and the human anticancer drug bortezomib, was identified. However, we know little about how expression of this protease is regulated, which proteins in the bacterium it degrades, how the protease recognizes its target proteins, and how the inhibition of ClpP1P2 exerts whole-cell antimicrobial activity. Here, we show that the ClpP1P2 protease regulates its own expression, and we identified a new substrate and a new substrate recognition sequence and a mechanism for how ClpP1P2 inhibition causes bacterial growth inhibition. ABSTRACT The mycobacterial caseinolytic protease ClpP1P2 is a degradative protease that recently gained interest as a genetically and pharmacologically validated drug target for tuberculosis. The first whole-cell active ClpP1P2 inhibitor, the human proteasome inhibitor bortezomib, is currently undergoing lead optimization to introduce selectivity for the bacterial target. How inhibition of ClpP1P2 translates into whole-cell antimicrobial activity is little understood. Previous work has shown that the caseinolytic protease gene regulator ClgR is an activator of the clpP1P2 genes and also suggested that this transcription factor may be a substrate of the protease. Here, we employ promoter activity reporters and direct mRNA level measurements showing that bortezomib treatment of Mycobacterium bovis BCG increased transcription of clpP1P2 and other ClgR-dependent promoters, suggesting that inhibition of ClpP1P2 increases cellular ClgR levels. Then, we carried out red fluorescent protein-ClgR fusion analyses to show that ClgR is indeed a substrate of ClpP1P2 and to identify ClgR’s C-terminal nonapeptide APVVSLAVA as the signal sufficient for recognition and efficient protein degradation by ClpP1P2. Interestingly, accumulation of ClgR appears to be toxic for bacilli, suggesting a mechanism for how pharmacological inhibition of ClpP1P2 protease activity by bortezomib translates into whole-cell antibacterial activity. IMPORTANCE With 9 million new cases and more than 1 million deaths per year, tuberculosis, caused by Mycobacterium tuberculosis, is the biggest infectious disease killer globally. New drugs for the treatment of the drug-resistant forms of the disease are needed. Recently, a new target-lead couple, the mycobacterial protease ClpP1P2 and the human anticancer drug bortezomib, was identified. However, we know little about how expression of this protease is regulated, which proteins in the bacterium it degrades, how the protease recognizes its target proteins, and how the inhibition of ClpP1P2 exerts whole-cell antimicrobial activity. Here, we show that the ClpP1P2 protease regulates its own expression, and we identified a new substrate and a new substrate recognition sequence and a mechanism for how ClpP1P2 inhibition causes bacterial growth inhibition.


Frontiers in Microbiology | 2017

Bortezomib Warhead-Switch Confers Dual Activity against Mycobacterial Caseinolytic Protease and Proteasome and Selectivity against Human Proteasome

Wilfried Moreira; Sridhar Santhanakrishnan; Brian W. Dymock; Thomas Dick

Mycobacteria harbor two main degradative proteolytic machineries, the caseinolytic protease ClpP1P2 and a proteasome. We recently showed that Bortezomib inhibits ClpP1P2 and exhibits whole cell activity against Mycobacterium tuberculosis. Bortezomib, a dipeptide with a boronic acid warhead, is a human proteasome inhibitor approved for cancer therapy. The boronic acid warhead of the compound has been shown to drive potency against both the human proteasome and ClpP1P2 protease. Selectivity for the bacterial ClpP1P2 protease over the human proteasome is lacking but needs to be achieved to move this new anti-tuberculosis lead forward. In this study we explored whether an alternative warhead could influence Bortezomibs selectivity. We synthesized an analog containing a chloromethyl ketone instead of the boronic acid warhead and determined potencies against the bacterial and human enzymes. Surprisingly, the analog retained activity against mycobacterial ClpP1P2 and was active against the mycobacterial proteasome, but was devoid of activity against the human proteasome. Interrogation of a set of chloromethyl ketone peptides identified three additional compounds similarly inhibiting both ClpP1P2 and the proteasome in the bacteria while leaving the human proteasome untouched. Finally, we showed that these compounds display bactericidal activity against M. tuberculosis with cytotoxicity ranging from acceptable to undetectable. These results suggest that selectivity over the human proteasome is achievable. Selectivity, together with dual-targeting of mycobacterial ClpP1P2 and proteasome makes this new scaffold an attractive starting point for optimization.

Collaboration


Dive into the Thomas Dick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dinah B. Aziz

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanette W. P. Teo

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Mu-Lu Wu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annanya Shetty

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jian Liang Low

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Mei-Lin Go

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Pooja Gopal

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge