Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Dorn is active.

Publication


Featured researches published by Thomas Dorn.


Epilepsia | 2012

Targeted next generation sequencing as a diagnostic tool in epileptic disorders

Johannes R. Lemke; Erik Riesch; Tim Scheurenbrand; Max Schubach; Christian Wilhelm; Isabelle Steiner; Jörg Hansen; Carolina Courage; Sabina Gallati; Sarah Bürki; Susi Strozzi; Barbara Goeggel Simonetti; Sebastian Grunt; Maja Steinlin; Michael Alber; Markus Wolff; Thomas Klopstock; Eva C. Prott; Rüdiger Lorenz; Christiane Spaich; Sabine Rona; Maya Lakshminarasimhan; Judith Kröll; Thomas Dorn; Günter Krämer; Matthis Synofzik; Felicitas Becker; Yvonne G. Weber; Holger Lerche; Detlef Böhm

Purpose:  Epilepsies have a highly heterogeneous background with a strong genetic contribution. The variety of unspecific and overlapping syndromic and nonsyndromic phenotypes often hampers a clear clinical diagnosis and prevents straightforward genetic testing. Knowing the genetic basis of a patient’s epilepsy can be valuable not only for diagnosis but also for guiding treatment and estimating recurrence risks.


American Journal of Human Genetics | 2010

Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes.

Erin L. Heinzen; Rodney A. Radtke; Thomas J. Urban; Gianpiero L. Cavalleri; Chantal Depondt; Anna C. Need; Nicole M. Walley; Paola Nicoletti; Dongliang Ge; Claudia B. Catarino; John S. Duncan; Dalia Kasperavičiūte; Sarah K. Tate; Luis O. Caboclo; Josemir W. Sander; Lisa M. Clayton; Kristen N. Linney; Curtis Gumbs; Jason Smith; Kenneth D. Cronin; Jessica M. Maia; Colin P. Doherty; Massimo Pandolfo; David Leppert; Lefkos T. Middleton; Rachel A. Gibson; Michael R. Johnson; Paul M. Matthews; David A. Hosford; Reetta Kälviäinen

Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions.


Neurology | 2004

Germline and mosaic mutations of FLN1 in men with periventricular heterotopia

Renzo Guerrini; Davide Mei; Sanjay M. Sisodiya; Federico Sicca; Brian Harding; Yukitoshi Takahashi; Thomas Dorn; A. Yoshida; Josep M. Campistol; G. Krämer; Francesca Moro; William B. Dobyns; Elena Parrini

Objective: To describe the phenotypic spectrum and genetics of periventricular nodular heterotopia (PNH) caused by FLN1 mutations in four men. Background: X-linked PNH caused by FLN1 mutations (MIM #300049) implies prenatal or early postnatal lethality in boys and 50% recurrence risk in daughters of affected women. Methods: Clinical examination, cognitive testing, MRI, and mutation analysis (denaturing high-performance liquid chromatography and direct sequencing) on blood lymphocytes and single hair roots were performed for nine affected individuals, including three men. Neuropathologic study of the brain was performed for an affected boy. Results: In two families, missense mutations were transmitted from mother to son (Met102Val) and from father to daughter (Ser149Phe), causing mild phenotypes in both genders, including unilateral PNH. In a third family, a man was mosaic for an A>G substitution (intron 11 acceptor splice site) on leukocyte DNA and hair roots (mutant = 42% and 69%). Single hair root analysis confirmed that the mutation was not present in all ectodermal derivative cells. A healthy daughter had inherited the X chromosome from her father’s wild-type germinal cell population. In the fourth family, an eight-base deletion (AGGAGGTG, intron 25 donor splice site) led to early deaths of boys. Postmortem study in a newborn boy revealed PNH and cardiovascular, genitourinary, and gut malformations. Conclusions: Periventricular nodular heterotopia caused by FLN1 mutations in men has a wide clinical spectrum and is caused by different genetic mechanisms, including somatic mosaicism. Mutation analysis of FLN1 should support genetic counseling in men with periventricular nodular heterotopia.


Brain | 2010

Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

Dalia Kasperavičiūtė; Claudia B. Catarino; Erin L. Heinzen; Chantal Depondt; Gianpiero L. Cavalleri; Luis O. Caboclo; Sarah K. Tate; Jenny Jamnadas-Khoda; Krishna Chinthapalli; Lisa M. Clayton; Rodney A. Radtke; Mohamad A. Mikati; William B. Gallentine; Aatif M. Husain; Saud Alhusaini; David Leppert; Lefkos T. Middleton; Rachel A. Gibson; Michael R. Johnson; Paul M. Matthews; David Hosford; Kjell Heuser; Leslie Amos; Marcos Ortega; Dominik Zumsteg; Heinz Gregor Wieser; Bernhard J. Steinhoff; Günter Krämer; Jörg Hansen; Thomas Dorn

Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.


Nature Genetics | 2015

De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy.

Steffen Syrbe; Ulrike B. S. Hedrich; Erik Riesch; Tania Djémié; Stephan Müller; R. S. Moller; Bridget Maher; Laura Hernandez-Hernandez; Matthis Synofzik; Hande Caglayan; Mutluay Arslan; José M. Serratosa; Michael Nothnagel; Patrick May; Roland Krause; Heidrun Löffler; Katja Detert; Thomas Dorn; Heinrich Vogt; Günter Krämer; Ludger Schöls; Primus-Eugen Mullis; Tarja Linnankivi; Anna-Elina Lehesjoki; Katalin Sterbova; Dana Craiu; Dorota Hoffman-Zacharska; Christian Korff; Yvonne G. Weber; Maja Steinlin

Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons.


Brain | 2013

Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A

Dalia Kasperavičiūtė; Claudia B. Catarino; Mar Matarin; Costin Leu; Jan Novy; Anna Tostevin; Bárbara Leal; Ellen V. S. Hessel; Kerstin Hallmann; Michael S. Hildebrand; Hans-Henrik M. Dahl; Mina Ryten; Daniah Trabzuni; Adaikalavan Ramasamy; Saud Alhusaini; Colin P. Doherty; Thomas Dorn; Jörg Hansen; Günter Krämer; Bernhard J. Steinhoff; Dominik Zumsteg; Susan Duncan; Reetta Kälviäinen; Kai Eriksson; Anne-Mari Kantanen; Massimo Pandolfo; Ursula Gruber-Sedlmayr; Kurt Schlachter; Eva M. Reinthaler; Elisabeth Stogmann

Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10−9, odds ratio (A) = 1.42, 95% confidence interval: 1.26–1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.


Neurogenetics | 2009

Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models

Alejandro Leal; Kathrin Huehne; Finn Bauer; Heinrich Sticht; Philipp Berger; Ueli Suter; Bernal Morera; Gerardo Del Valle; James R. Lupski; Arif B. Ekici; Francesca Pasutto; Sabine Endele; Ramiro Barrantes; Corinna Berghoff; Martin Berghoff; B. Neundörfer; Dieter Heuss; Thomas Dorn; Peter Young; Lisa Santolin; Thomas Uhlmann; Michael Meisterernst; Michael W. Sereda; Gerd Meyer zu Hörste; Klaus-Armin Nave; André Reis; Bernd Rautenstrauss

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis.Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis.


Brain | 2017

Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

Markus Wolff; Katrine Johannesen; Ulrike B. S. Hedrich; Silvia Masnada; Guido Rubboli; Elena Gardella; Gaetan Lesca; Dorothée Ville; Mathieu Milh; Laurent Villard; Alexandra Afenjar; Sandra Chantot-Bastaraud; Cyril Mignot; Caroline Lardennois; Caroline Nava; Niklas Schwarz; Marion Gerard; Laurence Perrin; Diane Doummar; Stéphane Auvin; Maria J Miranda; Maja Hempel; Eva H. Brilstra; N.V.A.M. Knoers; Nienke E. Verbeek; Marjan van Kempen; Kees P. J. Braun; Grazia M.S. Mancini; Saskia Biskup; Konstanze Hörtnagel

Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.


Neurology | 2016

Delineating the GRIN1 phenotypic spectrum A distinct genetic NMDA receptor encephalopathy

Johannes R. Lemke; Kirsten Geider; Katherine L. Helbig; Henrike O. Heyne; Hannah Schütz; Julia Hentschel; Carolina Courage; Christel Depienne; Caroline Nava; Delphine Héron; Rikke S. Møller; Helle Hjalgrim; Dennis Lal; Bernd A. Neubauer; Peter Nürnberg; Holger Thiele; G. Kurlemann; Georgianne L. Arnold; Vikas Bhambhani; Deborah Bartholdi; Christeen Ramane J. Pedurupillay; Doriana Misceo; Eirik Frengen; Petter Strømme; Dennis J. Dlugos; Emily S. Doherty; Emilia K. Bijlsma; Claudia Ruivenkamp; Mariette J.V. Hoffer; Amy Goldstein

Objective: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. Methods: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes. Results: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families. Conclusions: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.


Epilepsia | 2009

Bilateral frontoparietal polymicrogyria, Lennox‐Gastaut syndrome, and GPR56 gene mutations

Elena Parrini; Anna Rita Ferrari; Thomas Dorn; Christopher A. Walsh; Renzo Guerrini

Purpose:  Bilateral frontoparietal polymicrogyria (BFPP) has been reported in sporadic patients and in recessive pedigrees. Eleven mutations in GPR56, a gene encoding an evolutionarily dynamic G‐protein–coupled receptor, have been identified in 29 patients from 18 families. The clinical features of BFPP include severe mental retardation, motor and language impairment, and epilepsy. No detailed description of the epilepsy is available for the patients reported to date. We report three consanguineous families in which four affected individuals with BFPP and GPR56 mutations had Lennox‐Gastaut syndrome.

Collaboration


Dive into the Thomas Dorn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Hansen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maja Steinlin

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helle Hjalgrim

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

R. S. Moller

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge