Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas E. Angel is active.

Publication


Featured researches published by Thomas E. Angel.


Chemical Society Reviews | 2012

Mass spectrometry-based proteomics

Thomas E. Angel; Uma K. Aryal; Shawna M. Hengel; Erin S. Baker; Ryan T. Kelly; Errol W. Robinson; Richard D. Smith

Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health.


PLOS ONE | 2010

Establishing the Proteome of Normal Human Cerebrospinal Fluid

Steven E. Schutzer; Tao Liu; Benjamin H. Natelson; Thomas E. Angel; Athena A. Schepmoes; Samuel O. Purvine; Kim K. Hixson; Mary S. Lipton; David G. Camp; Patricia K. Coyle; Richard D. Smith; Jonas Bergquist

Background Knowledge of the entire protein content, the proteome, of normal human cerebrospinal fluid (CSF) would enable insights into neurologic and psychiatric disorders. Until now technologic hurdles and access to true normal samples hindered attaining this goal. Methods and Principal Findings We applied immunoaffinity separation and high sensitivity and resolution liquid chromatography-mass spectrometry to examine CSF from healthy normal individuals. 2630 proteins in CSF from normal subjects were identified, of which 56% were CSF-specific, not found in the much larger set of 3654 proteins we have identified in plasma. We also examined CSF from groups of subjects previously examined by others as surrogates for normals where neurologic symptoms warranted a lumbar puncture but where clinical laboratory were reported as normal. We found statistically significant differences between their CSF proteins and our non-neurological normals. We also examined CSF from 10 volunteer subjects who had lumbar punctures at least 4 weeks apart and found that there was little variability in CSF proteins in an individual as compared to subject to subject. Conclusions Our results represent the most comprehensive characterization of true normal CSF to date. This normal CSF proteome establishes a comparative standard and basis for investigations into a variety of diseases with neurological and psychiatric features.


PLOS ONE | 2011

Distinct Cerebrospinal Fluid Proteomes Differentiate Post-Treatment Lyme Disease from Chronic Fatigue Syndrome

Steven E. Schutzer; Thomas E. Angel; Tao Liu; Athena A. Schepmoes; Therese R. Clauss; Joshua N. Adkins; David G. Camp; Bart Holland; Jonas Bergquist; Patricia K. Coyle; Richard D. Smith; Brian Fallon; Benjamin H. Natelson

Background Neurologic Post Treatment Lyme disease (nPTLS) and Chronic Fatigue (CFS) are syndromes of unknown etiology. They share features of fatigue and cognitive dysfunction, making it difficult to differentiate them. Unresolved is whether nPTLS is a subset of CFS. Methods and Principal Findings Pooled cerebrospinal fluid (CSF) samples from nPTLS patients, CFS patients, and healthy volunteers were comprehensively analyzed using high-resolution mass spectrometry (MS), coupled with immunoaffinity depletion methods to reduce protein-masking by abundant proteins. Individual patient and healthy control CSF samples were analyzed directly employing a MS-based label-free quantitative proteomics approach. We found that both groups, and individuals within the groups, could be distinguished from each other and normals based on their specific CSF proteins (p<0.01). CFS (n = 43) had 2,783 non-redundant proteins, nPTLS (n = 25) contained 2,768 proteins, and healthy normals had 2,630 proteins. Preliminary pathway analysis demonstrated that the data could be useful for hypothesis generation on the pathogenetic mechanisms underlying these two related syndromes. Conclusions nPTLS and CFS have distinguishing CSF protein complements. Each condition has a number of CSF proteins that can be useful in providing candidates for future validation studies and insights on the respective mechanisms of pathogenesis. Distinguishing nPTLS and CFS permits more focused study of each condition, and can lead to novel diagnostics and therapeutic interventions.


Biochimica et Biophysica Acta | 2012

Antigen–antibody interface properties: Composition, residue interactions, and features of 53 non-redundant structures

Thiruvarangan Ramaraj; Thomas E. Angel; Edward A. Dratz; Algirdas J. Jesaitis; Brendan Mumey

The structures of protein antigen-antibody (Ag-Ab) interfaces contain information about how Ab recognize Ag as well as how Ag are folded to present surfaces for Ag recognition. As such, the Ab surface holds information about Ag folding that resides with the Ab-Ag interface residues and how they interact. In order to gain insight into the nature of such interactions, a data set comprised of 53 non-redundant 3D structures of Ag-Ab complexes was analyzed. We assessed the physical and biochemical features of the Ag-Ab interfaces and the degree to which favored interactions exist between amino acid residues on the corresponding interface surfaces. Amino acid compositional analysis of the interfaces confirmed the dominance of TYR in the Ab paratope-containing surface (PCS), with almost two fold greater abundance than any other residue. Additionally TYR had a much higher than expected presence in the PCS compared to the surface of the whole antibody (defined as the occurrence propensity), along with aromatics PHE, TRP, and to a lesser degree HIS and ILE. In the Ag epitope-containing surface (ECS), there were slightly increased occurrence propensities of TRP and TYR relative to the whole Ag surface, implying an increased significance over the compositionally most abundant LYS>ASN>GLU>ASP>ARG. This examination encompasses a large, diverse set of unique Ag-Ab crystal structures that help explain the biological range and specificity of Ag-Ab interactions. This analysis may also provide a measure of the significance of individual amino acid residues in phage display analysis of Ag binding.


Journal of Neuroimmune Pharmacology | 2013

Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection

Richard W. Price; Julia Peterson; Dietmar Fuchs; Thomas E. Angel; Henrik Zetterberg; Lars Hagberg; Serena Spudich; Richard D. Smith; Jon M. Jacobs; Joseph N. Brown; Magnus Gisslén

Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previously-defined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.


PLOS ONE | 2012

Activity-based protein profiling reveals mitochondrial oxidative enzyme impairment and restoration in diet-induced obese mice.

Natalie C. Sadler; Thomas E. Angel; Michael P. Lewis; LeeAnna M. Pederson; Lacie M. Chauvigné-Hines; Susan D. Wiedner; Erika M. Zink; Richard D. Smith; Aaron T. Wright

High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD, or if mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar, or elevated, relative to standard diet (SD) mice; thereby, IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases and nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.


Molecular & Cellular Proteomics | 2012

Morphine Produces Immunosuppressive Effects in Nonhuman Primates at the Proteomic and Cellular Levels

Joseph N. Brown; Gabriel M. Ortiz; Thomas E. Angel; Jon M. Jacobs; Marina A. Gritsenko; Eric Y. Chan; David E. Purdy; Robert D. Murnane; Kay Larsen; Robert E. Palermo; Anil K. Shukla; Therese R. Clauss; Michael G. Katze; Joseph M. McCune; Richard D. Smith

Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. To explore how these changes interact with lentiviral infections in vivo, animals from two nonhuman primate species (African green monkeys and pigtailed macaques) were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g. lymph node, colon, cerebrospinal fluid, and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an interorgan, interindividual, and interspecies basis. In both species, morphine was associated with decreased levels of Ki-67+ T-cell activation but with only minimal changes in overall T-cell counts, neutrophil counts, and NK cell counts. Although changes in T-cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in lymph nodes, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have direct relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the potential interplay between opioid abuse and the immunological response to an infective agent.


Journal of Proteome Research | 2012

Metabonomic Profiling of TASTPM Transgenic Alzheimer’s Disease Mouse Model

Zeping Hu; Edward R. Browne; Tao Liu; Thomas E. Angel; Paul C. Ho; Eric Chun Yong Chan

Identification of molecular mechanisms underlying early stage Alzheimers disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, nontargeted metabonomics of TASTPM transgenic AD mice was performed. The metabolic profiles of both brain and plasma of TASTPM mice were characterized using gas chromatography-mass spectrometry and compared to those of wild-type C57BL/6J mice. TASTPM mice were metabolically distinct compared to wild-type mice (Q2Y=0.587 and 0.766 for PLS-DA models derived from brain and plasma, respectively). A number of metabolites were found to be perturbed in TASTPM mice in both brain (D-fructose, L-valine, L-serine, L-threonine, zymosterol) and plasma (D-glucose, D-galactose, linoleic acid, arachidonic acid, palmitic acid and D-gluconic acid). In addition, enzyme immunoassay confirmed that selected endogenous steroids were significantly perturbed in brain (androstenedione and 17-OH-progesterone) and plasma (cortisol and testosterone) of TASTPM mice. Ingenuity pathway analysis revealed that perturbations related to amino acid metabolism (brain), steroid biosynthesis (brain), linoleic acid metabolism (plasma) and energy metabolism (plasma) accounted for the differentiation of TASTPM and wild-type mice. Our results provided insights on the pathogenesis of APP-induced AD and reinforced the role of TASTPM in drug and biomarker development.


PLOS ONE | 2013

Gray Matter Is Targeted in First-Attack Multiple Sclerosis

Steven E. Schutzer; Thomas E. Angel; Tao Liu; Athena A. Schepmoes; Fang Xie; Jonas Bergquist; Lazlo' Vecsei; Dénes Zádori; David G. Camp; Bart Holland; Richard D. Smith; Patricia K. Coyle

The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.


Journal of Biological Chemistry | 2006

Analysis of Human Phagocyte Flavocytochrome b558 by Mass Spectrometry

Ross M. Taylor; Danas Baniulis; James B. Burritt; Jeannie M. Gripentrog; Connie I. Lord; Marcia H. Riesselman; Walid S. Maaty; Brian Bothner; Thomas E. Angel; Edward A. Dratz; Gilda F. Linton; Harry L. Malech; Algirdas J. Jesaitis

The catalytic core of the phagocyte NADPH oxidase is a heterodimeric integral membrane protein (flavocytochrome b (Cyt b)) that generates superoxide and initiates a cascade of reactive oxygen species critical for the host inflammatory response. In order to facilitate structural characterization, the present study reports the first direct analysis of human phagocyte Cyt b by matrix-assisted laser desorption/ionization and nanoelectrospray mass spectrometry. Mass analysis of in-gel tryptic digest samples provided 73% total sequence coverage of the gp91phox subunit, including three of the six proposed transmembrane domains. Similar analysis of the p22phox subunit provided 72% total sequence coverage, including assignment of the hydrophobic N-terminal region and residues that are polymorphic in the human population. To initiate mass analysis of Cyt b post-translational modifications, the isolated gp91phox subunit was subject to sequential in-gel digestion with Flavobacterium meningosepticum peptide N-glycosidase F and trypsin, with matrix-assisted laser desorption/ionization and liquid chromatography-mass spectrometry/mass spectrometry used to demonstrate that Asn-132, -149, and -240 are genuinely modified by N-linked glycans in human neutrophils. Since the PLB-985 cell line represents an important model system for analysis of the NADPH oxidase, methods were developed for the purification of Cyt b from PLB-985 membrane fractions in order to confirm the appropriate modification of N-linked glycosylation sites on the recombinant gp91phox subunit. This study reports extensive sequence coverage of the integral membrane protein Cyt b by mass spectrometry and provides analytical methods that will be useful for evaluating posttranslational modifications involved in the regulation of superoxide production.

Collaboration


Dive into the Thomas E. Angel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Camp

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon M. Jacobs

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph N. Brown

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marina A. Gritsenko

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tao Liu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Uma K. Aryal

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anil K. Shukla

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge