Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas E. Angelini is active.

Publication


Featured researches published by Thomas E. Angelini.


Nature Materials | 2011

Collective cell guidance by cooperative intercellular forces

Dhananjay Tambe; C. Corey Hardin; Thomas E. Angelini; Kavitha Rajendran; Chan Young Park; Xavier Serra-Picamal; Enhua H. Zhou; Muhammad H. Zaman; James P. Butler; David A. Weitz; Jeffrey J. Fredberg; Xavier Trepat

Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell-cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer. Within the cell sheet there arise unanticipated fluctuations of mechanical stress that are severe, emerge spontaneously, and ripple across the monolayer. This stress landscape becomes increasingly rugged, sluggish, and cooperative with increasing system density. Within that landscape, local cellular migrations follow local orientations of maximal principal stress. Migrations of both endothelial and epithelial monolayers conform to this behavior, as do breast cancer cell lines before but not after the epithelial-mesenchymal transition. Collective migration in these diverse systems is seen to be governed by a simple but unifying physiological principle: neighboring cells join forces to transmit appreciable normal stress across the cell-cell junction, but migrate along orientations of minimal intercellular shear stress.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Glass-like dynamics of collective cell migration

Thomas E. Angelini; Edouard Hannezo; Xavier Trepat; Manuel Marquez; Jeffrey J. Fredberg; David A. Weitz

Collective cell migration in tissues occurs throughout embryonic development, during wound healing, and in cancerous tumor invasion, yet most detailed knowledge of cell migration comes from single-cell studies. As single cells migrate, the shape of the cell body fluctuates dramatically through cyclic processes of extension, adhesion, and retraction, accompanied by erratic changes in migration direction. Within confluent cell layers, such subcellular motions must be coupled between neighbors, yet the influence of these subcellular motions on collective migration is not known. Here we study motion within a confluent epithelial cell sheet, simultaneously measuring collective migration and subcellular motions, covering a broad range of length scales, time scales, and cell densities. At large length scales and time scales collective migration slows as cell density rises, yet the fastest cells move in large, multicell groups whose scale grows with increasing cell density. This behavior has an intriguing analogy to dynamic heterogeneities found in particulate systems as they become more crowded and approach a glass transition. In addition we find a diminishing self-diffusivity of short-wavelength motions within the cell layer, and growing peaks in the vibrational density of states associated with cooperative cell-shape fluctuations. Both of these observations are also intriguingly reminiscent of a glass transition. Thus, these results provide a broad and suggestive analogy between cell motion within a confluent layer and the dynamics of supercooled colloidal and molecular fluids approaching a glass transition.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Like-charge attraction between polyelectrolytes induced by counterion charge density waves

Thomas E. Angelini; Hongjun Liang; Willy Wriggers; Gerard C. L. Wong

Electrostatics in aqueous media is commonly understood in terms of screened Coulomb interactions, where like-charged objects, such as polyelectrolytes, always repel. These intuitive expectations are based on mean field theories, such as the Poisson–Boltzmann formalism, which are routinely used in colloid science and computational biology [Israelachvili, J. (1992) Intermolecular and Surface Forces (Academic, London), 2nd ed.]. Like-charge attractions, however, have been observed in a variety of systems [Gelbart, W. M., Bruinsma, R. F., Pincus, P. A. & Parsegian, V. A. (2000) Phys. Today 53, 38–44]. Intense theoretical scrutiny over the last 30 years suggests that counterions play a central role, but no consensus exists for the precise mechanism. We have directly observed the organization of multivalent ions on cytoskeletal filamentous actin (a well defined biological polyelectrolyte) by using synchrotron x-ray diffraction and discovered an unanticipated symmetry-breaking collective counterion mechanism for generating attractions. Surprisingly, the counterions do not form a lattice that simply follows actins helical symmetry; rather, the counterions organize into “frozen” ripples parallel to the actin filaments and form 1D charge density waves. Moreover, this 1D counterion charge density wave couples to twist distortions of the oppositely charged actin filaments. This general cooperative molecular mechanism is analogous to the formation of polarons in ionic solids and mediates attractions by facilitating a “zipper-like” charge alignment between the counterions and the polyelectrolyte charge distribution. We believe these results can fundamentally impinge on our general understanding of electrostatics in aqueous media and are relevant to a wide range of colloidal and biomedical processes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix

Agnese Seminara; Thomas E. Angelini; James N. Wilking; Hera Vlamakis; Senan Ebrahim; Roberto Kolter; David A. Weitz; Michael P. Brenner

Bacterial biofilms are organized communities of cells living in association with surfaces. The hallmark of biofilm formation is the secretion of a polymeric matrix rich in sugars and proteins in the extracellular space. In Bacillus subtilis, secretion of the exopolysaccharide (EPS) component of the extracellular matrix is genetically coupled to the inhibition of flagella-mediated motility. The onset of this switch results in slow expansion of the biofilm on a substrate. Different strains have radically different capabilities in surface colonization: Flagella-null strains spread at the same rate as wild type, while both are dramatically faster than EPS mutants. Multiple functions have been attributed to the EPS, but none of these provides a physical mechanism for generating spreading. We propose that the secretion of EPS drives surface motility by generating osmotic pressure gradients in the extracellular space. A simple mathematical model based on the physics of polymer solutions shows quantitative agreement with experimental measurements of biofilm growth, thickening, and spreading. We discuss the implications of this osmotically driven type of surface motility for nutrient uptake that may elucidate the reduced fitness of the matrix-deficient mutant strains.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Bacillus subtilis spreads by surfing on waves of surfactant

Thomas E. Angelini; Marcus Roper; Roberto Kolter; David A. Weitz; Michael P. Brenner

The bacterium Bacillus subtilis produces the molecule surfactin, which is known to enhance the spreading of multicellular colonies on nutrient substrates by lowering the surface tension of the surrounding fluid, and to aid in the formation of aerial structures. Here we present experiments and a mathematical model that demonstrate how the differential accumulation rates induced by the geometry of the bacterial film give rise to surfactant waves. The spreading flux increases with increasing biofilm viscosity. Community associations are known to protect bacterial populations from environmental challenges such as predation, heat, or chemical stresses, and enable digestion of a broader range of nutritive sources. This study provides evidence of enhanced dispersal through cooperative motility, and points to nonintuitive methods for controlling the spread of biofilms.


Science Advances | 2015

Writing in the granular gel medium

Tapomoy Bhattacharjee; Steven Zehnder; Kyle G. Rowe; Suhani Jain; Ryan Nixon; W. Gregory Sawyer; Thomas E. Angelini

The reversible fluid-solid transition in granular gels enables the three-dimensional writing of soft, delicate, macroscopic structures with microscopic detail. Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies.


Tribology Letters | 2017

Meeting the Contact-Mechanics Challenge

Martin H. Müser; Wolf B. Dapp; Romain Bugnicourt; Philippe Sainsot; Nicolas Lesaffre; Ton Lubrecht; B. N. J. Persson; Kathryn L. Harris; Alexander I. Bennett; Kyle D. Schulze; Sean Rohde; Peter Ifju; W. Gregory Sawyer; Thomas E. Angelini; Hossein Ashtari Esfahani; Mahmoud Kadkhodaei; Saleh Akbarzadeh; Jiunn-Jong Wu; Georg Vorlaufer; A. Vernes; Soheil Solhjoo; Antonis I. Vakis; Robert L. Jackson; Yang Xu; Jeffrey L. Streator; Amir Rostami; Daniele Dini; Simon Medina; Giuseppe Carbone; Francesco Bottiglione

This paper summarizes the submissions to a recently announced contact-mechanics modeling challenge. The task was to solve a typical, albeit mathematically fully defined problem on the adhesion between nominally flat surfaces. The surface topography of the rough, rigid substrate, the elastic properties of the indenter, as well as the short-range adhesion between indenter and substrate, were specified so that diverse quantities of interest, e.g., the distribution of interfacial stresses at a given load or the mean gap as a function of load, could be computed and compared to a reference solution. Many different solution strategies were pursued, ranging from traditional asperity-based models via Persson theory and brute-force computational approaches, to real-laboratory experiments and all-atom molecular dynamics simulations of a model, in which the original assignment was scaled down to the atomistic scale. While each submission contained satisfying answers for at least a subset of the posed questions, efficiency, versatility, and accuracy differed between methods, the more precise methods being, in general, computationally more complex. The aim of this paper is to provide both theorists and experimentalists with benchmarks to decide which method is the most appropriate for a particular application and to gauge the errors associated with each one.


Physical Review Letters | 2005

Structure And Stability of Self-Assembled Actin-Lysozyme Complexes in Salty Water

Lori K. Sanders; Camilo Guáqueta; Thomas E. Angelini; Jaewook Lee; Scott C. Slimmer; Erik Luijten; Gerard C. L. Wong

Interactions between actin, an anionic polyelectrolyte, and lysozyme, a cationic globular protein, have been examined using a combination of synchrotron small-angle x-ray scattering and molecular dynamics simulations. Lysozyme initially bridges pairs of actin filaments, which relax into hexagonally coordinated columnar complexes comprised of actin held together by incommensurate one-dimensional close-packed arrays of lysozyme macroions. These complexes are found to be stable even in the presence of significant concentrations of monovalent salt, which is quantitatively explained from a redistribution of salt between the condensed and the aqueous phases.


Biophysical Journal | 2015

Cell Volume Fluctuations in MDCK Monolayers

Steven Zehnder; Melanie Suaris; Madisonclaire M. Bellaire; Thomas E. Angelini

Cells moving collectively in tissues constitute a form of active matter, in which collective motion depends strongly on driven fluctuations at the single-cell scale. Fluctuations in cell area and number density are often seen in monolayers, yet their role in collective migration is not known. Here we study density fluctuations at the single- and multicell level, finding that single-cell volumes oscillate with a timescale of 4 h and an amplitude of 20%; the timescale and amplitude are found to depend on cytoskeletal activity. At the multicellular scale, density fluctuations violate the central limit theorem, highlighting the role of nonequilibrium driving forces in multicellular density fluctuations.


New Journal of Physics | 2014

Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

Wenbo Zhang; Agnese Seminara; Melanie Suaris; Michael P. Brenner; David A. Weitz; Thomas E. Angelini; Parc Valrose

Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial

Collaboration


Dive into the Thomas E. Angelini's collaboration.

Researchain Logo
Decentralizing Knowledge