Thomas E. Beechem
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas E. Beechem.
IEEE\/ASME Journal of Microelectromechanical Systems | 2006
Jungchul Lee; Thomas E. Beechem; Tanya L. Wright; Brent A. Nelson; Samuel Graham; William P. King
Silicon atomic force microscope (AFM) cantilevers having integrated solid-state heaters were originally developed for application to data storage, but have since been applied to metrology, thermophysical property measurements, and nanoscale manufacturing. These applications beyond data storage have strict requirements for mechanical characterization and precise temperature calibration of the cantilever. This paper describes detailed mechanical, electrical, and thermal characterization and calibration of AFM cantilevers having integrated solid-state heaters. Analysis of the cantilever response to electrical excitation in both time and frequency domains aids in resolving heat transfer mechanisms in the cantilever. Raman spectroscopy provides local temperature measurement along the cantilever with resolution near 1 mum and 5degC and also provides local surface stress measurements. Observation of the cantilever mechanical thermal noise spectrum at room temperature and while heated provides insight into cantilever mechanical behavior and compares well with finite-element analysis. The characterization and calibration methodology reported here expands the use of heated AFM cantilevers, particularly the uses for nanomanufacturing and sensing
Nano Letters | 2012
Patrick E. Hopkins; Mira Baraket; Edward V. Barnat; Thomas E. Beechem; Sean P. Kearney; John C. Duda; Jeremy T. Robinson; Scott G. Walton
Graphene-based devices have garnered tremendous attention due to the unique physical properties arising from this purely two-dimensional carbon sheet leading to tremendous efficiency in the transport of thermal carriers (i.e., phonons). However, it is necessary for this two-dimensional material to be able to efficiently transport heat into the surrounding 3D device architecture in order to fully capitalize on its intrinsic transport capabilities. Therefore, the thermal boundary conductance at graphene interfaces is a critical parameter in the realization of graphene electronics and thermal solutions. In this work, we examine the role of chemical functionalization on the thermal boundary conductance across metal/graphene interfaces. Specifically, we metalize graphene that has been plasma functionalized and then measure the thermal boundary conductance at Al/graphene/SiO(2) contacts with time domain thermoreflectance. The addition of adsorbates to the graphene surfaces are shown to influence the cross plane thermal conductance; this behavior is attributed to changes in the bonding between the metal and the graphene, as both the phonon flux and the vibrational mismatch between the materials are each subject to the interfacial bond strength. These results demonstrate plasma-based functionalization of graphene surfaces is a viable approach to manipulate the thermal boundary conductance.
ACS Nano | 2012
Xiaoyin Xiao; Thomas E. Beechem; Michael T. Brumbach; Timothy N. Lambert; Danae J. Davis; Joseph R. Michael; Cody M. Washburn; Joseph Wang; Susan M. Brozik; David R. Wheeler; D. Bruce Burckel
A simple and facile method to fabricate 3D graphene architectures is presented. Pyrolyzed photoresist films (PPF) can easily be patterned into a variety of 2D and 3D structures. We demonstrate how prestructured PPF can be chemically converted into hollow, interconnected 3D multilayered graphene structures having pore sizes around 500 nm. Electrodes formed from these structures exhibit excellent electrochemical properties including high surface area and steady-state mass transport profiles due to a unique combination of 3D pore structure and the intrinsic advantages of electron transport in graphene, which makes this material a promising candidate for microbattery and sensing applications.
Review of Scientific Instruments | 2007
Thomas E. Beechem; Samuel Graham; Sean P. Kearney; Leslie M. Phinney; Justin R. Serrano
Analysis of the Raman Stokes peak position and its shift has been frequently used to estimate either temperature or stress in microelectronics and microelectromechanical system devices. However, if both fields are evolving simultaneously, the Stokes shift represents a convolution of these effects, making it difficult to measure either quantity accurately. By using the relative independence of the Stokes linewidth to applied stress, it is possible to deconvolve the signal into an estimation of both temperature and stress. Using this property, a method is presented whereby the temperature and stress were simultaneously measured in doped polysilicon microheaters. A data collection and analysis method was developed to reduce the uncertainty in the measured stresses resulting in an accuracy of +/-40 MPa for an average applied stress of -325 MPa and temperature of 520 degrees C. Measurement results were compared to three-dimensional finite-element analysis of the microheaters and were shown to be in excellent agreement. This analysis shows that Raman spectroscopy has the potential to measure both evolving temperature and stress fields in devices using a single optical measurement.
PLOS ONE | 2011
Aaron M. Collins; Howland D. T. Jones; Danxiang Han; Qiang Hu; Thomas E. Beechem; Jerilyn A. Timlin
Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance–enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells.
Journal of Heat Transfer-transactions of The Asme | 2008
Patrick E. Hopkins; Pamela M. Norris; Robert J. Stevens; Thomas E. Beechem; Samuel Graham
The thermal conductance at solid-solid interfaces is becoming increasingly important in thermal considerations dealing with devices on nanometer length scales. Specifically, interdiffusion or mixing around the interface, which is generally ignored, must be taken into account when the characteristic lengths of the devices are on the order of the thickness of this mixing region. To study the effect of this interfacial mixing on thermal conductance, a series of Cr films is grown on Si substrates subject to various deposition conditions to control the growth around the Cr/Si boundary. The Cr/Si interfaces are characterized with Auger electron spectroscopy. The thermal boundary conductance (h BD ) is measured with the transient thermoreflectance technique. Values of h BD are found to vary with both the thickness of the mixing region and the rate of compositional change in the mixing region. The effects of the varying mixing regions in each sample on h BD are discussed, and the results are compared to the diffuse mismatch model (DMM) and the virtual crystal DMM (VCDMM), which takes into account the effects of a two-phase region of finite thickness around the interface on h BD . An excellent agreement is shown between the measured h BD and that predicted by the VCDMM for a change in thickness of the two-phase region around the interface.
Applied Physics Letters | 2007
Thomas E. Beechem; Samuel Graham; Patrick E. Hopkins; Pamela M. Norris
An analytical method is presented to estimate the effects of structural disorder on the thermal boundary conductance (TBC) between two materials. The current method is an extension of the diffuse mismatch model (DMM) where the interface is modeled as a virtual crystal of finite thickness with properties derived from those of the constituent materials. Using this approximation, the TBC for a series of chromium/silicon interfaces is modeled and shown to be within 18% of experimentally obtained values. The methodology improves upon the predictive capabilities of the DMM and allows for quick estimation of the impact of interface mixing on TBC.
Journal of Applied Physics | 2010
John C. Duda; Thomas E. Beechem; Justin L. Smoyer; Pamela M. Norris; Patrick E. Hopkins
The diffuse mismatch model (DMM) is one of the most widely implemented models for predicting thermal boundary conductance at interfaces where phonons dominate interfacial thermal transport. In the original presentation of the DMM, the materials comprising the interface were described as Debye solids. Such a treatment, while accurate in the low temperature regime for which the model was originally intended, is less accurate at higher temperatures. Here, the DMM is reformulated such that, in place of Debye dispersion, the materials on either side of the interface are described by an isotropic dispersion obtained from exact phonon dispersion diagrams in the [100] crystallographic direction. This reformulated model is applied to three interfaces of interest: Cr–Si, Cu–Ge, and Ge–Si. It is found that Debye dispersion leads to substantially higher predictions of thermal boundary conductance. Additionally, it is shown that optical phonons play a significant role in interfacial thermal transport, a notion not pre...
Journal of Materials Chemistry | 2012
Xiaoyin Xiao; Joseph R. Michael; Thomas E. Beechem; Anthony E. McDonald; Mark A. Rodriguez; Michael T. Brumbach; Timothy N. Lambert; Cody M. Washburn; Joseph Wang; Susan M. Brozik; David R. Wheeler; D. Bruce Burckel
The annealing of nickel-coated porous carbon structures results in a new three dimensional nanostructured graphene encapsulated nickel core–shell electrode. A highly interdependent and dynamic process is observed that results in the complete reversal of the spatial orientations of the two component system after the annealing process. We examine the mechanism of carbon diffusion and observe unexpected morphological changes of the nickel in response to carbon crystallization. The new nickel–graphene core–shell electrode demonstrates excellent electrochemical properties with promising applications in micro-batteries and biosensors.
Journal of Applied Physics | 2008
Thomas E. Beechem; Adam Christensen; Samuel Graham; D. S. Green
Raman thermometry is often utilized to measure temperature in gallium nitride (GaN) electronics. However, the accuracy of the technique is subject to errors arising from stresses which develop during device operation as a result of both thermoelastic and inverse piezoelectric effects. To assess the implications of these stresses on Raman thermometry, we investigate the use of the Stokes peak position, linewidth, and Stokes to anti-Stokes intensity ratio to estimate the temperature of GaN devices during operation. Our results indicate that only temperature measurements obtained from the intensity ratio method are independent of these stresses. Measurements using the linewidth, meanwhile, were found to correspond well with those obtained from the intensity ratio through the use of a reference condition which accounted for the stress dependency of this spectral component. These results were then compared to a three dimensional finite element model which yielded a correlation to within 5% between the computat...