Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Eggermann is active.

Publication


Featured researches published by Thomas Eggermann.


American Journal of Human Genetics | 2002

PKHD1, the Polycystic Kidney and Hepatic Disease 1 Gene, Encodes a Novel Large Protein Containing Multiple Immunoglobulin-Like Plexin-Transcription–Factor Domains and Parallel Beta-Helix 1 Repeats

Luiz F. Onuchic; Laszlo Furu; Yasuyuki Nagasawa; Xiaoying Hou; Thomas Eggermann; Zhiyong Ren; Carsten Bergmann; Jan Senderek; Ernie L. Esquivel; Raoul Zeltner; Sabine Rudnik-Schöneborn; Michael Mrug; William E. Sweeney; Ellis D. Avner; Klaus Zerres; Lisa M. Guay-Woodford; Stefan Somlo; Gregory G. Germino

Autosomal recessive polycystic kidney disease (ARPKD) is a severe form of polycystic kidney disease that presents primarily in infancy and childhood and that is characterized by enlarged kidneys and congenital hepatic fibrosis. We have identified PKHD1, the gene mutated in ARPKD. PKHD1 extends over > or =469 kb, is primarily expressed in human fetal and adult kidney, and includes a minimum of 86 exons that are variably assembled into a number of alternatively spliced transcripts. The longest continuous open reading frame encodes a 4,074-amino-acid protein, polyductin, that is predicted to have a single transmembrane (TM)-spanning domain near its carboxyl terminus, immunoglobulin-like plexin-transcription-factor domains, and parallel beta-helix 1 repeats in its amino terminus. Several transcripts encode truncated products that lack the TM and that may be secreted if translated. The PKHD1-gene products are members of a novel class of proteins that share structural features with hepatocyte growth-factor receptor and plexins and that belong to a superfamily of proteins involved in regulation of cell proliferation and of cellular adhesion and repulsion.


Nature Genetics | 2004

Mutations in SLC6A19 , encoding B 0 AT1, cause Hartnup disorder

Robert Kleta; Elisa Romeo; Zorica Ristic; Toshihiro Ohura; Caroline Stuart; Mauricio Arcos-Burgos; Mital H. Dave; Carsten A. Wagner; Simone R M Camargo; Sumiko Inoue; Norio Matsuura; Amanda Helip-Wooley; Detlef Bockenhauer; Richard Warth; Isa Bernardini; Gepke Visser; Thomas Eggermann; Philip Lee; Arthit Chairoungdua; Promsuk Jutabha; Ellappan Babu; Sirinun Nilwarangkoon; Naohiko Anzai; Yoshikatsu Kanai; François Verrey; William A. Gahl; Akio Koizumi

Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis. Using homozygosity mapping in the original family in whom Hartnup disorder was discovered, we confirmed that the critical region for one causative gene was located on chromosome 5p15 (ref. 3). This region is homologous to the area of mouse chromosome 13 that encodes the sodium-dependent amino acid transporter B0AT1 (ref. 4). We isolated the human homolog of B0AT1, called SLC6A19, and determined its size and molecular organization. We then identified mutations in SLC6A19 in members of the original family in whom Hartnup disorder was discovered and of three Japanese families. The protein product of SLC6A19, the Hartnup transporter, is expressed primarily in intestine and renal proximal tubule and functions as a neutral amino acid transporter.


Human Genetics | 1997

Molecular studies in 37 Silver-Russell syndrome patients: frequency and etiology of uniparental disomy

Thomas Eggermann; Hartmut A. Wollmann; Ruprecht Kuner; Katja Eggermann; Herbert Enders; Peter Kaiser; Michael B. Ranke

Abstract We report studies on the etiology of uniparental disomy (UPD) in Silver-Russell syndrome (SRS) patients. Thirty-seven SRS families were typed with short tandem repeat markers from chromosomes 2, 7, 9, 14, and 16. UPD for these chromosomes has either been described in association with growth retardation or has been observed in confined placental mosaicism, a mechanism that may result in UPD. Maternal UPD7 was detected in three SRS patients, accounting for approximately 10% of the tested SRS patients. These results agree with previously published studies. The allelic distribution in one of the three families indicates complete isodisomy, whereas allelic patterns in the other two families are consistent with partial and complete heterodisomy, respectively, suggesting that, in the latter cases, UPD originates from maternal meiosis, whereas in the first case, it seems to be of mitotic origin. STR typing for UPD of chromosomes 2, 9, 14, and 16 showed no abnormalities. Our results demonstrate the necessity of screening SRS patients for UPD7, although the effect of UPD7 cannot be correlated with the SRS phenotype as yet. An association between UPD for the other investigated chromosomes and SRS seems to be negligible.


Journal of Medical Genetics | 2008

Congenital heart disease is a feature of severe infantile spinal muscular atrophy

Sabine Rudnik-Schöneborn; Raoul Heller; Corinna Margarete Berg; Christopher Betzler; Tiemo Grimm; Thomas Eggermann; Katja Eggermann; Radu Wirth; Brunhilde Wirth; Klaus Zerres

Objective: Homozygous deletions/mutations of the SMN1 gene cause infantile spinal muscular atrophy (SMA). The presence of at least one SMN2 gene copy is required for normal embryogenesis. Lack of SMN protein results in degeneration of motor neurons, while extraneuronal manifestations have been regarded as a chance association with SMA. We report on heart defects in the subgroup of congenital SMA type I patients. Methods: Data were recruited from 65 unselected SMA I patients whose diagnosis had been confirmed genetically within the first 6 months of age. SMN2 copy numbers were analysed retrospectively and correlated with clinical findings including heart malformations. Results: Four (6%) patients had one copy of SMN2, 56 (86%) had two and five (8%) had three SMN2 copies. Three out of four (75%) patients with a single SMN2 copy had congenital SMA with haemodynamically relevant atrial or ventricular septal defects. Conclusions: Previous case reports of SMA I patients with congenital heart defects did not clarify whether the cardiac malformations were coincidental. Given the respective incidences of congenitally lethal SMA with a single SMN2 copy and of cardiac septal defects in humans, a chance association of both conditions would occur in less than one out of 50 million individuals. Our findings suggest that the SMN protein is relevant for normal cardiogenesis.


Journal of Medical Genetics | 2006

The centromeric 11p15 imprinting centre is also involved in Silver–Russell syndrome

Nadine Schönherr; Esther Meyer; Andreas Roos; Angela Schmidt; Hartmut A. Wollmann; Thomas Eggermann

Silver–Russell syndrome (SRS) is a heterogeneous disorder characterised by severe intrauterine and postnatal growth retardation, limb and body asymmetry, a typical facial appearance and less common dysmorphisms. Recently, epimutations and maternal duplications affecting the short arm of chromosome 11 have been shown to have a crucial role in the aetiology of the disease. Disturbances in the same genomic region cause the overgrowth disorder Beckwith–Wiedemann syndrome (BWS). In BWS, mutations in the telomeric as well as in the centromeric imprinting centres (ICR1 and ICR2) in 11p15 can be observed. In SRS, methylation defects in the imprinted region in 11p15 were considered to be restricted to the telomeric ICR1. They can be detected in about 30% of patients. This article reports on the first patient with SRS with a cryptic duplication restricted to the centromeric ICR2 domain in 11p15. The maternally inherited duplication in this patient included a region of 0.76–1 Mbp and affected the genes regulated by the ICR2, among them CDKN1C and LIT1. This study provides evidence for a role for this imprinting centre in the aetiology of SRS and shows that SRS presents a picture genetically opposite to that of BWS.


Trends in Genetics | 2008

Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome

Thomas Eggermann; Katja Eggermann; Nadine Schönherr

Human growth is a complex process that requires the appropriate interaction of many players. Central members in the growth pathways are regulated epigenetically and thereby reflect the profound significance of imprinting for correct mammalian ontogenesis. In this review, we show that the growth retardation disorder Silver-Russell syndrome (SRS) is a suitable model to decipher the role of imprinting in growth. As we will show, SRS should not only be regarded as the genetically (and clinically) opposite disease to Beckwith-Wiedemann syndrome, but it also represents the first human disorder with imprinting disturbances that affect two different chromosomes (i.e. chromosomes 7 and 11). Thus, a functional interaction between factors encoded by chromosomes 7 and 11 is likely.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2010

Russell―Silver Syndrome

Thomas Eggermann

In comparison to Prader–Willi or Angelman syndrome, Russell–Silver syndrome (RSS) is a relatively “young” imprinting disorder. This congenital disease is characterized by intrauterine and postnatal growth retardation, relative macrocephaly, a typical triangular face, asymmetry, and further less constant characteristic features. Genetic and epigenetic disturbances can meanwhile be detected in approximately 50% of patients with typical RSS features. Up to 5% of patients carry a maternal uniparental disomy of chromosome 7 (UPD(7)mat), at least 44% show hypomethylation in the chromosome 11p15 imprinting center 1 (IC). In 1–2% of RSS patients, (sub)microscopic chromosomal aberrations can be observed. The diagnostic workup should therefore include methylation/genomic testing for chromosome 11p15, UPD(7)mat analysis and molecular karyotyping. The recurrence risk is generally low in RSS but it can be strongly increased in cases of familial epimutations or a chromosomal rearrangement. Interestingly, in ∼7% of cases with chromosome 11p15 hypomethylation, hypomethylation of additional imprinted loci can be detected. Clinically, patients with hypomethylation at multiple loci do not differ from those with isolated 11p15 hypomethylation whereas the UPD(7)mat patients generally show a milder phenotype. Nevertheless, (epi)genotype–phenotype correlations are still evolving. Furthermore, the pathophysiological mechanisms resulting in the RSS phenotype still remain unknown despite the recent progress in deciphering the molecular defects associated with this condition.


Journal of Medical Genetics | 2005

Is maternal duplication of 11p15 associated with Silver- Russell syndrome?

Thomas Eggermann; Esther Meyer; C Obermann; Ingeborg Heil; Herdit M. Schüler; Michael B. Ranke; Katja Eggermann; Hartmut A. Wollmann

Background: Silver-Russell syndrome (SRS) is a heterogeneous malformation syndrome characterised by intrauterine and postnatal growth retardation (IUGR, PGR) and dysmorphisms. The basic causes are unknown, however in approximately 10% of patients a maternal uniparental disomy (UPD) of chromosome 7 or chromosomal aberrations can be detected. Four growth retarded children, two with SRS-like features, associated with maternal duplications of 11p15 have been described. Considering the involvement of this genomic region in Beckwith-Wiedemann overgrowth syndrome (BWS), we postulated that some cases of SRS—with an opposite phenotype to BWS—might also be caused by genomic disturbances in 11p15. Methods: A total of 46 SRS patients were screened for genomic rearrangements in 11p15 by STR typing and FISH analysis. Results: Two SRS patients with duplications of maternal 11p material in our study population (n = 46) were detected. In patient SR46, the duplicated region covered at least 9 Mb; FISH analysis revealed a translocation of 11p15 onto 10q. In patient SR90, additional 11p15 material (approximately 5 Mb) was translocated to the short arm of chromosome 15. Conclusions: We suggest that diagnostic testing for duplication in 11p15 should be offered to patients with severe IUGR and PGR with clinical signs reminiscent of SRS. SRS is a genetically heterogeneous condition and patients with a maternal duplication of 11p15.5 may form an important subgroup.


Journal of Medical Genetics | 2005

Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain

Thomas Eggermann; Nadine Schönherr; Esther Meyer; C Obermann; M Mavany; Katja Eggermann; Michael B. Ranke; Hartmut A. Wollmann

Introduction: Silver-Russell syndrome (SRS; also know as Russell-Silver syndrome) is a heterogeneous syndrome which is characterised by severe intrauterine and postnatal growth retardation and typical dysmorphic features. Recently, the first SRS patients with (epi)genetic mutations in 11p15 affecting the telomeric imprinting domain have been identified. Interestingly, opposite mutations are associated with Beckwith-Wiedemann syndrome (BWS). However, the general significance of epigenetic mutations in 11p15 for the aetiology of SRS remained unclear. Methods: We screened a cohort of 51 SRS patients for epimutations in ICR1 and KCNQ1OT1 by methylation sensitive Southern blot analyses. Results: ICR1 demethylation could be observed in 16 of the 51 SRS patients, corresponding to a frequency of approximately 31%. Changes in methylation at the KCNQ1OT1 locus were not detected. Discussion: Combining these data with those on maternal duplications in 11p15, nearly 35% of SRS cases are associated with detectable (epi)genetic disturbances in 11p15. We now have to also consider a general involvement of 11p15 alterations in growth retarded patients with only minor or without further dysmorphic features. SRS and BWS may now be regarded as two diseases caused by opposite (epi)genetic disturbances of the same chromosomal region displaying opposite clinical pictures.


NeuroImage | 2010

Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals.

Axel Krug; Vanessa Nieratschker; Valentin Markov; Sören Krach; Andreas Jansen; Klaus Zerres; Thomas Eggermann; Tony Stöcker; N. Jon Shah; Thomas W. Mühleisen; Tilo Kircher

BACKGROUND Recent genetic studies found the A allele of the variant rs1006737 in the alpha 1C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene to be overrepresented in patients suffering from bipolar disorder, schizophrenia or major depression. While the functions underlying the pathophysiology of these psychiatric disorders are yet unknown, impaired performance in verbal fluency tasks is an often replicated finding. We investigated the influence of the rs1006737 single nucleotide polymorphism (SNP) on verbal fluency and its neural correlates. METHODS Brain activation was measured with functional magnetic resonance imaging (fMRI) during a semantic verbal fluency task in 63 healthy male individuals. They additionally performed more demanding verbal fluency tasks outside the scanner. All subjects were genotyped for CACNA1C rs1006737. RESULTS For the behavioral measures outside the scanner, rs1006737genotype had an effect on semantic but not on lexical verbal fluency with decreased performance in risk-allele carriers. In the fMRI experiment, while there were no differences in behavioural performance, increased activation in the left inferior frontal gyrus as well as the left precuneus was found in risk-allele carriers in the semantic verbal fluency task. CONCLUSIONS The rs1006737 variant does influence language production on a semantic level in conjunction with the underlying neural systems. These findings are in line with results of studies in bipolar disorder, schizophrenia and major depression and may explain some of the cognitive and brain activation variation found in these disorders.

Collaboration


Dive into the Thomas Eggermann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Binder

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Ranke

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge