Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas F. Baumert is active.

Publication


Featured researches published by Thomas F. Baumert.


Nature Medicine | 2011

EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy

Joachim Lupberger; Mirjam B. Zeisel; Fei Xiao; Christine Thumann; Isabel Fofana; Laetitia Zona; Christopher Davis; Christopher J. Mee; Marine Turek; Sebastian Gorke; Cathy Royer; Benoit Fischer; Muhammad Zahid; Dimitri Lavillette; Judith Fresquet; François-Loïc Cosset; S Michael Rothenberg; Thomas Pietschmann; Arvind H. Patel; Patrick Pessaux; Michel Doffoel; Wolfgang Raffelsberger; Olivier Poch; Jane A. McKeating; Laurent Brino; Thomas F. Baumert

Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81–claudin-1 co-receptor associations and viral glycoprotein–dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.


Journal of Virology | 2011

Neutralizing Antibody-Resistant Hepatitis C Virus Cell-to-Cell Transmission

Claire L. Brimacombe; Joe Grove; Luke W. Meredith; Ke Hu; Andrew J. Syder; Maria Victoria Flores; Jennifer M. Timpe; Sophie E. Krieger; Thomas F. Baumert; Timothy L. Tellinghuisen; Flossie Wong-Staal; Peter Balfe; Jane A. McKeating

ABSTRACT Hepatitis C virus (HCV) can initiate infection by cell-free particle and cell-cell contact-dependent transmission. In this study we use a novel infectious coculture system to examine these alternative modes of infection. Cell-to-cell transmission is relatively resistant to anti-HCV glycoprotein monoclonal antibodies and polyclonal immunoglobulin isolated from infected individuals, providing an effective strategy for escaping host humoral immune responses. Chimeric viruses expressing the structural proteins representing the seven major HCV genotypes demonstrate neutralizing antibody-resistant cell-to-cell transmission. HCV entry is a multistep process involving numerous receptors. In this study we demonstrate that, in contrast to earlier reports, CD81 and the tight-junction components claudin-1 and occludin are all essential for both cell-free and cell-to-cell viral transmission. However, scavenger receptor BI (SR-BI) has a more prominent role in cell-to-cell transmission of the virus, with SR-BI-specific antibodies and small-molecule inhibitors showing preferential inhibition of this infection route. These observations highlight the importance of targeting host cell receptors, in particular SR-BI, to control viral infection and spread in the liver.


Hepatology | 2010

Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles

Wagane J. A. Benga; Sophie E. Krieger; Maria Dimitrova; Mirjam B. Zeisel; Marie Parnot; Joachim Lupberger; Eberhard Hildt; Guangxiang Luo; John McLauchlan; Thomas F. Baumert; Catherine Schuster

Chronic hepatitis C virus (HCV) infection is a major cause of liver disease worldwide. Restriction of HCV infection to human hepatocytes suggests that liver‐specific host factors play a role in the viral life cycle. Using a yeast‐two‐hybrid system, we identified apolipoprotein E (apoE) as a liver‐derived host factor specifically interacting with HCV nonstructural protein 5A (NS5A) but not with other viral proteins. The relevance of apoE–NS5A interaction for viral infection was confirmed by co‐immunoprecipitation and co‐localization studies of apoE and NS5A in an infectious HCV cell culture model system. Silencing apoE expression resulted in marked inhibition of infectious particle production without affecting viral entry and replication. Analysis of particle production in liver‐derived cells with silenced apoE expression showed impairment of infectious particle assembly and release. The functional relevance of the apoE–NS5A interaction for production of viral particles was supported by loss or decrease of apoE–NS5A binding in assembly‐defective viral mutants. Conclusion: These results suggest that recruitment of apoE by NS5A is important for viral assembly and release of infectious viral particles. These findings have important implications for understanding the HCV life cycle and the development of novel antiviral strategies targeting HCV–lipoprotein interaction. (HEPATOLOGY 2010)


Proceedings of the National Academy of Sciences of the United States of America | 2013

Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells

Vedashree Ramakrishnaiah; Christine Thumann; Isabel Fofana; F. Habersetzer; Qiuwei Pan; Petra E. de Ruiter; Rob Willemsen; Jeroen Demmers; Victor Stalin Raj; Guido Jenster; Jaap Kwekkeboom; Hugo W. Tilanus; Bart L. Haagmans; Thomas F. Baumert; Luc J. W. van der Laan

Recent evidence indicates there is a role for small membrane vesicles, including exosomes, as vehicles for intercellular communication. Exosomes secreted by most cell types can mediate transfer of proteins, mRNAs, and microRNAs, but their role in the transmission of infectious agents is less established. Recent studies have shown that hepatocyte-derived exosomes containing hepatitis C virus (HCV) RNA can activate innate immune cells, but the role of exosomes in the transmission of HCV between hepatocytes remains unknown. In this study, we investigated whether exosomes transfer HCV in the presence of neutralizing antibodies. Purified exosomes isolated from HCV-infected human hepatoma Huh7.5.1 cells were shown to contain full-length viral RNA, viral protein, and particles, as determined by RT-PCR, mass spectrometry, and transmission electron microscopy. Exosomes from HCV-infected cells were capable of transmitting infection to naive human hepatoma Huh7.5.1 cells and establishing a productive infection. Even with subgenomic replicons, lacking structural viral proteins, exosome-mediated transmission of HCV RNA was observed. Treatment with patient-derived IgGs showed a variable degree of neutralization of exosome-mediated infection compared with free virus. In conclusion, this study showed that hepatic exosomes can transmit productive HCV infection in vitro and are partially resistant to antibody neutralization. This discovery sheds light on neutralizing antibodies resistant to HCV transmission by exosomes as a potential immune evasion mechanism.


Journal of Hepatology | 2015

miR-122 – A key factor and therapeutic target in liver disease

Simonetta Bandiera; Sébastien Pfeffer; Thomas F. Baumert; Mirjam B. Zeisel

Being the largest internal organ of the human body with the unique ability of self-regeneration, the liver is involved in a wide variety of vital functions that require highly orchestrated and controlled biochemical processes. Increasing evidence suggests that microRNAs (miRNAs) are essential for the regulation of liver development, regeneration and metabolic functions. Hence, alterations in intrahepatic miRNA networks have been associated with liver disease including hepatitis, steatosis, cirrhosis and hepatocellular carcinoma (HCC). miR-122 is the most frequent miRNA in the adult liver, and a central player in liver biology and disease. Furthermore, miR-122 has been shown to be an essential host factor for hepatitis C virus (HCV) infection and an antiviral target, complementary to the standard of care using direct-acting antivirals or interferon-based treatment. This review summarizes our current understanding of the key role of miR-122 in liver physiology and disease, highlighting its role in HCC and viral hepatitis. We also discuss the perspectives of miRNA-based therapeutic approaches for viral hepatitis and liver disease.


Hepatology | 2010

Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2–CD81–Claudin-1 associations†

Sophie E. Krieger; Mirjam B. Zeisel; Christopher Davis; Christine Thumann; Helen J. Harris; Eva K. Schnober; Christopher J. Mee; Eric Soulier; Cathy Royer; Mélanie Lambotin; Fritz Grunert; Viet Loan Dao Thi; Marlène Dreux; François-Loı̈c Cosset; Jane A. McKeating; Catherine Schuster; Thomas F. Baumert

The tight junction protein claudin‐1 (CLDN1) has been shown to be essential for hepatitis C virus (HCV) entry—the first step of viral infection. Due to the lack of neutralizing anti‐CLDN1 antibodies, the role of CLDN1 in the viral entry process is poorly understood. In this study, we produced antibodies directed against the human CLDN1 extracellular loops by genetic immunization and used these antibodies to investigate the mechanistic role of CLDN1 for HCV entry in an infectious HCV cell culture system and human hepatocytes. Antibodies specific for cell surface–expressed CLDN1 specifically inhibit HCV infection in a dose‐dependent manner. Antibodies specific for CLDN1, scavenger receptor B1, and CD81 show an additive neutralizing capacity compared with either agent used alone. Kinetic studies with anti‐CLDN1 and anti‐CD81 antibodies demonstrate that HCV interactions with both entry factors occur at a similar time in the internalization process. Anti‐CLDN1 antibodies inhibit the binding of envelope glycoprotein E2 to HCV permissive cell lines in the absence of detectable CLDN1‐E2 interaction. Using fluorescent‐labeled entry factors and fluorescence resonance energy transfer methodology, we demonstrate that anti‐CLDN1 antibodies inhibit CD81‐CLDN1 association. In contrast, CLDN1‐CLDN1 and CD81‐CD81 associations were not modulated. Taken together, our results demonstrate that antibodies targeting CLDN1 neutralize HCV infectivity by reducing E2 association with the cell surface and disrupting CD81‐CLDN1 interactions. Conclusion: These results further define the function of CLDN1 in the HCV entry process and highlight new antiviral strategies targeting E2‐CD81‐CLDN1 interactions. (HEPATOLOGY 2010.)


Journal of Hepatology | 2011

Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies

Mirjam B. Zeisel; Isabel Fofana; Samira Fafi-Kremer; Thomas F. Baumert

Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. Preventive modalities are absent and the current antiviral treatment is limited by resistance, toxicity, and high costs. Viral entry is required for initiation, spread, and maintenance of infection, and thus is a promising target for antiviral therapy. HCV entry is a highly orchestrated process involving viral and host cell factors. These include the viral envelope glycoproteins E1 and E2, CD81, scavenger receptor BI, and tight junction proteins claudin-1 and occludin. Recent studies in preclinical models and HCV-infected patients have demonstrated that the virus has developed multiple strategies to escape host immune responses during viral entry. These include evasion from neutralizing antibodies and viral spread by cell-cell transmission. These challenges have to be taken into account for the design of efficient antiviral strategies. Thus, a detailed understanding of the mechanisms of viral entry and escape is a prerequisite to define viral and cellular targets and develop novel preventive and therapeutic antivirals. This review summarizes the current knowledge about the molecular mechanisms of HCV entry into hepatocytes, highlights novel targets and reviews the current preclinical and clinical development of compounds targeting entry. Proof-of-concept studies suggest that HCV entry inhibitors are a novel and promising class of antivirals widening the preventive and therapeutic arsenal against HCV infection.


The New England Journal of Medicine | 2014

Curing Chronic Hepatitis C — The Arc of a Medical Triumph

Raymond T. Chung; Thomas F. Baumert

The development of direct-acting antiviral agents has revolutionized the treatment of hepatitis C by offering genuine prospects for a comprehensive cure of a chronic viral infection. This success can be traced to important scientific, clinical, and regulatory developments.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees

Gamal Elmowalid; Ming Qiao; Sook Hyang Jeong; Brian B. Borg; Thomas F. Baumert; Ronda K. Sapp; Zongyi Hu; Krishna K. Murthy; T. Jake Liang

Recombinant hepatitis C virus (HCV)-like particles (HCV-LPs) containing HCV structural proteins (core, E1, and E2) produced in insect cells resemble the putative HCV virions and are capable of inducing strong and broad humoral and cellular immune responses in mice and baboons. Here, we present evidence on the immunogenicity and induction of protective immunity by HCV-LPs in chimpanzees. Chimpanzees (two in each group), were immunized with HCV-LPs or HCV-LPs plus AS01B adjuvant. After immunizations, all animals developed an HCV-specific immune response including IFN-γ+, IL-2+, CD4+, and CD8+ T cell and proliferative lymphocyte responses against core, E1, and E2. Upon challenge with an infectious HCV inoculum, one chimpanzee developed transient viremia with low HCV RNA titers (103 to 104 copies per ml) in the third and fourth weeks after the challenge. The three other chimpanzees became infected with higher levels of viremia (104 to 105 copies per ml), but their viral levels became unquantifiable (<103 copies per ml) 10 weeks after the challenge. After the HCV challenge, all four chimpanzees demonstrated a significant increase in peripheral and intrahepatic T cell and proliferative responses against the HCV structural proteins. These T cell responses coincided with the fall in HCV RNA levels. Four naïve chimpanzees were infected with the same HCV inoculum, and three developed persistent infection with higher viremia in the range of 105 to 106 copies per ml. Our study suggests that HCV-LP immunization induces HCV-specific cellular immune responses that can control HCV challenge in the chimpanzee model.


Gastroenterology | 2010

Monoclonal Anti-Claudin 1 Antibodies Prevent Hepatitis C Virus Infection of Primary Human Hepatocytes

Isabel Fofana; Sophie E. Krieger; Fritz Grunert; Sandra Glauben; Fei Xiao; Samira Fafi–Kremer; Eric Soulier; Cathy Royer; Christine Thumann; Christopher J. Mee; Jane A. McKeating; Tatjana Dragic; Patrick Pessaux; Françoise Stoll–Keller; Catherine Schuster; John F. Thompson; Thomas F. Baumert

BACKGROUND & AIMS Hepatitis C virus (HCV) infection is a challenge to prevent and treat because of the rapid development of drug resistance and escape. Viral entry is required for initiation, spread, and maintenance of infection, making it an attractive target for antiviral strategies. The tight junction protein claudin-1 (CLDN1) has been shown to be required for entry of HCV into the cell. METHODS Using genetic immunization, we produced 6 monoclonal antibodies against the host entry factor CLDN1. The effects of antibodies on HCV infection were analyzed in human cell lines and primary human hepatocytes. RESULTS Competition and binding studies demonstrated that antibodies interacted with conformational epitopes of the first extracellular loop of CLDN1; binding of these antibodies required the motif W(30)-GLW(51)-C(54)-C(64) and residues in the N-terminal third of CLDN1. The monoclonal antibodies against CLDN1 efficiently inhibited infection by HCV of all major genotypes as well as highly variable HCV quasispecies isolated from individual patients. Furthermore, antibodies efficiently blocked cell entry of highly infectious escape variants of HCV that were resistant to neutralizing antibodies. CONCLUSIONS Monoclonal antibodies against the HCV entry factor CLDN1 might be used to prevent HCV infection, such as after liver transplantation, and might also restrain virus spread in chronically infected patients.

Collaboration


Dive into the Thomas F. Baumert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Fofana

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Laura Heydmann

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge