Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas F. Bristow is active.

Publication


Featured researches published by Thomas F. Bristow.


Science | 2014

A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

John P. Grotzinger; Dawn Y. Sumner; L. C. Kah; K. Stack; S. Gupta; Lauren A. Edgar; David M. Rubin; Kevin W. Lewis; Juergen Schieber; N. Mangold; Ralph E. Milliken; P. G. Conrad; David J. DesMarais; Jack D. Farmer; K. L. Siebach; F. Calef; Joel A. Hurowitz; Scott M. McLennan; D. Ming; D. T. Vaniman; Joy A. Crisp; Ashwin R. Vasavada; Kenneth S. Edgett; M. C. Malin; D. Blake; R. Gellert; Paul R. Mahaffy; Roger C. Wiens; Sylvestre Maurice; J. A. Grant

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Science | 2014

Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars

D. T. Vaniman; David L. Bish; D. W. Ming; Thomas F. Bristow; Richard V. Morris; David F. Blake; S. J. Chipera; Shaunna M. Morrison; Allan H. Treiman; E. B. Rampe; Melissa S. Rice; C. N. Achilles; John P. Grotzinger; Scott M. McLennan; J. Williams; James F. Bell; H. Newsom; Robert T. Downs; Sylvestre Maurice; Philippe Sarrazin; Albert S. Yen; J. M. Morookian; Jack D. Farmer; K. Stack; Ralph E. Milliken; Bethany L. Ehlmann; Dawn Y. Sumner; Gilles Berger; Joy A. Crisp; Joel A. Hurowitz

Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.


Science | 2013

Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

David F. Blake; Richard V. Morris; Gary Kocurek; Shaunna M. Morrison; Robert T. Downs; David L. Bish; Douglas W. Ming; Kenneth S. Edgett; David M. Rubin; W. Goetz; M. B. Madsen; R. Sullivan; R. Gellert; I. Campbell; Allan H. Treiman; Scott M. McLennan; Albert S. Yen; John P. Grotzinger; D. T. Vaniman; S. J. Chipera; C. N. Achilles; E. B. Rampe; Dawn Y. Sumner; P.-Y. Meslin; Sylvestre Maurice; O. Forni; O. Gasnault; Martin R. Fisk; M. Schmidt; Paul R. Mahaffy

The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.


Science | 2013

X-ray diffraction results from mars science laboratory: Mineralogy of rocknest at Gale crater

David L. Bish; David F. Blake; D. T. Vaniman; S. J. Chipera; Richard V. Morris; Douglas W. Ming; Allan H. Treiman; Philippe Sarrazin; Shaunna M. Morrison; Robert T. Downs; C. N. Achilles; Albert S. Yen; Thomas F. Bristow; Joy A. Crisp; J. M. Morookian; Jack D. Farmer; E. B. Rampe; Edward M. Stolper; N. Spanovich

The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe3+- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.


Journal of Geophysical Research | 2015

Diagenesis and clay mineral formation at Gale Crater, Mars

John C. Bridges; S. P. Schwenzer; R. Leveille; Frances Westall; Roger C. Wiens; N. Mangold; Thomas F. Bristow; P. Edwards; Gilles Berger

The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ∽7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.


Geology | 2008

Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean

Thomas F. Bristow; Martin J. Kennedy

A possible global drop in marine carbon isotope values to as low as −12‰ Peedee belemnite (PDB), recorded in the Ediacaran Shuram Formation of Oman, has been attributed to the non-steady-state oxidation of oceanic dissolved organic carbon (DOC) resulting from the rise in atmospheric oxygen to near modern values at the end of the Precambrian. Geologic constraints indicate that the excursion lasted between 25 and 50 m.y., requiring a DOC pool thousands of times to 10,000 times the modern inventory to conform with carbon isotope mass balance calculations for a −12‰ excursion. At the consequent rates of DOC oxidation, oceanic sulfate and oxygen in the atmosphere and oceans are exhausted on a time scale of ~800 k.y. Oxidant depletion is incompatible with independent geochemical and biological indicators that show oceanic sulfate and oxygen levels were maintained or increased during the Shuram excursion. Furthermore, a DOC-driven excursion does not explain strong covariation between the carbon and oxygen isotope record. These indicators show that negative isotope excursions recorded in the Shuram and other Ediacaran sections are unlikely to represent a global ocean signal.


Journal of Geophysical Research | 2016

Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

Allan H. Treiman; David L. Bish; David T. Vaniman; S. J. Chipera; David F. Blake; Douglas W. Ming; Richard V. Morris; Thomas F. Bristow; Shaunna M. Morrison; M. B. Baker; E. B. Rampe; Robert T. Downs; Justin Filiberto; Allen F. Glazner; Ralf Gellert; Lucy M. Thompson; Mariek E. Schmidt; Laetitia Le Deit; Roger C. Wiens; A. C. McAdam; C. N. Achilles; Kenneth S. Edgett; Jack D. Farmer; Kim V. Fendrich; John P. Grotzinger; Sanjeev Gupta; John Michael Morookian; Megan Newcombe; Melissa S. Rice; John G. Spray

Abstract The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X‐ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X‐ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser‐Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K‐rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K‐rich sediment component is consistent with APXS and ChemCam observations of K‐rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiositys identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar‐age terranes on Earth.


Nature | 2011

A hydrothermal origin for isotopically anomalous cap dolostone cements from south China

Thomas F. Bristow; Magali Bonifacie; Arkadiusz Derkowski; John M. Eiler; John P. Grotzinger

The release of methane into the atmosphere through destabilization of clathrates is a positive feedback mechanism capable of amplifying global warming trends that may have operated several times in the geological past. Such methane release is a hypothesized cause or amplifier for one of the most drastic global warming events in Earth history, the end of the Marinoan ‘snowball Earth’ ice age, ∼635 Myr ago. A key piece of evidence supporting this hypothesis is the occurrence of exceptionally depleted carbon isotope signatures (δ13CPDB down to −48‰; ref. 8) in post-glacial cap dolostones (that is, dolostone overlying glacial deposits) from south China; these signatures have been interpreted as products of methane oxidation at the time of deposition. Here we show, on the basis of carbonate clumped isotope thermometry, 87Sr/86Sr isotope ratios, trace element content and clay mineral evidence, that carbonates bearing the 13C-depleted signatures crystallized more than 1.6 Myr after deposition of the cap dolostone. Our results indicate that highly 13C-depleted carbonate cements grew from hydrothermal fluids and suggest that their carbon isotope signatures are a consequence of thermogenic methane oxidation at depth. This finding not only negates carbon isotope evidence for methane release during Marinoan deglaciation in south China, but also eliminates the only known occurrence of a Precambrian sedimentary carbonate with highly 13C-depleted signatures related to methane oxidation in a seep environment. We propose that the capacity to form highly 13C-depleted seep carbonates, through biogenic anaeorobic oxidation of methane using sulphate, was limited in the Precambrian period by low sulphate concentrations in sea water. As a consequence, although clathrate destabilization may or may not have had a role in the exit from the ‘snowball’ state, it would not have left extreme carbon isotope signals in cap dolostones.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation

Thomas F. Bristow; Martin J. Kennedy; Arkadiusz Derkowski; Mary L. Droser; Ganqing Jiang; Robert A. Creaser

Assemblages of clay minerals are routinely used as proxies for paleoclimatic change and paleoenvironmental conditions in Phanerozoic rocks. However, this tool is rarely applied in older sedimentary units. In this paper, the clay mineralogy of the Doushantuo Formation in South China is documented, providing constraints on depositional conditions of the Ediacaran Yangtze platform that host the earliest animal fossils in the geological record. In multiple sections from the Yangtze Gorges area, trioctahedral smectite (saponite) and its diagenetic products (mixed-layer chlorite/smectite, corrensite, and chlorite) are the dominant clays through the lower 80 m of the formation and constitute up to 30 wt% of the bulk rock. Saponite is interpreted as an in situ early diagenetic phase that formed in alkaline conditions (pH ≥ 9). The absence of saponite in stratigraphically equivalent basin sections, 200–400 km to the south, indicates that alkaline conditions were localized in a nonmarine basin near the Yangtze Gorges region. This interpretation is consistent with crustal abundances of redox-sensitive trace elements in saponitic mudstones deposited under anoxic conditions, as well as a 10‰ difference in the carbon isotope record between Yangtze Gorges and basin sections. Our findings suggest that nonmarine environments may have been hospitable for the fauna preserved in the Yangtze Gorges, which includes the oldest examples of animal embryo fossils and acanthomorphic acritarchs.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

Richard V. Morris; David T. Vaniman; David F. Blake; Ralf Gellert; S. J. Chipera; E. B. Rampe; Douglas W. Ming; Shaunna M. Morrison; Robert T. Downs; Allan H. Treiman; Albert S. Yen; John P. Grotzinger; C. N. Achilles; Thomas F. Bristow; Joy A. Crisp; David J. Des Marais; Jack D. Farmer; Kim V. Fendrich; Jens Frydenvang; T. G. Graff; J. M. Morookian; Edward M. Stolper; S. P. Schwenzer

Significance Tridymite, a SiO2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-SiO2 compositions. Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

Collaboration


Dive into the Thomas F. Bristow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. B. Rampe

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert S. Yen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jack D. Farmer

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge