Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas F. Schilling is active.

Publication


Featured researches published by Thomas F. Schilling.


Mechanisms of Development | 2000

Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos

Louise A Brown; Adam Rodaway; Thomas F. Schilling; Trevor Jowett; Philip W. Ingham; Roger K. Patient; Andrew D. Sharrocks

Fli-1 is an ETS-domain transcription factor whose locus is disrupted in Ewings Sarcoma and F-MuLV induced erythroleukaemia. To gain a better understanding of its normal function, we have isolated the zebrafish homologue. Similarities with other vertebrates, in the amino acid sequence and DNA binding properties of Fli-1 from zebrafish, suggest that its function has been conserved during vertebrate evolution. The initial expression of zebrafish fli-1 in the posterior lateral mesoderm overlaps with that of gata2 in a potential haemangioblast population which likely contains precursors of blood and endothelium. Subsequently, fli-1 and gata2 expression patterns diverge, with separate fli-1 and gata2 expression domains arising in the developing vasculature and in sites of blood formation respectively. Elsewhere in the embryo, fli-1 is expressed in sites of vasculogenesis. The expression of fli-1 was investigated in a number of zebrafish mutants, which affect the circulatory system. In cloche, endothelium is absent and blood is drastically reduced. In contrast to the blood and endothelial markers that have been studied previously, fli-1 expression was initiated normally in cloche embryos, indicating that induction of fli-1 is one of the earliest indicators of haemangioblast formation. Furthermore, although fli-1 expression in the trunk was not maintained, the normal expression pattern in the anterior half of the embryo was retained. These anterior cells did not, however, condense to form blood vessels. These data indicate that cloche has previously unsuspected roles at multiple stages in the formation of the vasculature. Analysis of fli-1 expression in midline patterning mutants floating head and squint, confirms a requirement for the notochord in the formation of the dorsal-aorta. The formation of endothelium in one-eyed pinhead, cyclops and squint embryos indicates a novel role for the endoderm in the formation of the axial vein. The phenotype of sonic-you mutants implies a likely role for Sonic Hedgehog in mediating these processes.


Development | 2005

Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull.

Naoyuki Wada; Yashar Javidan; Sarah Nelson; Thomas J. Carney; Robert N. Kelsh; Thomas F. Schilling

Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.


Development | 2003

The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans

Tatjana Piotrowski; Dae Gwon Ahn; Thomas F. Schilling; Sreelaja Nair; Ilya Ruvinsky; Robert Geisler; Gerd Jörg Rauch; Pascal Haffter; Leonard I. Zon; Yi Zhou; Helen Foott; Igor B. Dawid; Robert K. Ho

The van gogh (vgo) mutant in zebrafish is characterized by defects in the ear, pharyngeal arches and associated structures such as the thymus. We show that vgo is caused by a mutation in tbx1, a member of the large family of T-box genes. tbx1 has been recently suggested to be a major contributor to the cardiovascular defects in DiGeorge deletion syndrome (DGS) in humans, a syndrome in which several neural crest derivatives are affected in the pharyngeal arches. Using cell transplantation studies, we demonstrate that vgo/tbx1 acts cell autonomously in the pharyngeal mesendoderm and influences the development of neural crest-derived cartilages secondarily. Furthermore, we provide evidence for regulatory interactions between vgo/tbx1 and edn1 and hand2, genes that are implicated in the control of pharyngeal arch development and in the etiology of DGS.


PLOS Biology | 2007

Complex Regulation of cyp26a1 Creates a Robust Retinoic Acid Gradient in the Zebrafish Embryo

Richard J. White; Qing Nie; Arthur D. Lander; Thomas F. Schilling

Positional identities along the anterior–posterior axis of the vertebrate nervous system are assigned during gastrulation by multiple posteriorizing signals, including retinoic acid (RA), fibroblast growth factors (Fgfs), and Wnts. Experimental evidence has suggested that RA, which is produced in paraxial mesoderm posterior to the hindbrain by aldehyde dehydrogenase 1a2 (aldh1a2/raldh2), forms a posterior-to-anterior gradient across the hindbrain field, and provides the positional information that specifies the locations and fates of rhombomeres. Recently, alternative models have been proposed in which RA plays only a permissive role, signaling wherever it is not degraded. Here we use a combination of experimental and modeling tools to address the role of RA in providing long-range positional cues in the zebrafish hindbrain. Using cell transplantation and implantation of RA-coated beads into RA-deficient zebrafish embryos, we demonstrate that RA can directly convey graded positional information over long distances. We also show that expression of Cyp26a1, the major RA-degrading enzyme during gastrulation, is under complex feedback and feedforward control by RA and Fgf signaling. The predicted consequence of such control is that RA gradients will be both robust to fluctuations in RA synthesis and adaptive to changes in embryo length during gastrulation. Such control also provides an explanation for the fact that loss of an endogenous RA gradient can be compensated for by RA that is provided in a spatially uniform manner.


Anesthesia & Analgesia | 2005

The Pulmonary Immune Effects of Mechanical Ventilation in Patients Undergoing Thoracic Surgery

Thomas F. Schilling; Alf Kozian; Christof Huth; Frank Bühling; Moritz Kretzschmar; Tobias Welte; Thomas Hachenberg

Mechanical ventilation (MV) may induce an inflammatory alveolar response. One-lung ventilation (OLV) with tidal volumes (Vt) as used during two-lung ventilation is a suggested algorithm but may impose mechanical stress of the dependent lung and potentially aggravate alveolar mediator release. We studied whether ventilation with different Vt modifies pulmonary immune function, hemodynamics, and gas exchange. Thirty-two patients undergoing open thoracic surgery were randomized to receive either MV with Vt = 10 mL/kg (n = 16) or Vt = 5 mL/kg (n = 16) adjusted to normal Paco2 during and after OLV. Fiberoptic bronchoalveolar lavage of the ventilated lung was performed, and cells, protein, tumor necrosis factor (TNF)-&agr;, interleukin (IL)-8, soluble intercellular adhesion molecule (sICAM)-1, IL-10, and elastase were determined in the bronchoalveolar lavage. Data were analyzed by parametric or nonparametric tests, as indicated. In all patients, an increase of proinflammatory variables was found. The time courses of intra-alveolar cells, protein, albumin, IL-8, elastase, and IL-10 did not differ between the groups after OLV and postoperatively. TNF-&agr; (8.4 versus 5.0 &mgr;g/mL) and sICAM-1 (52.7 versus 27.5 &mgr;g/mL) concentrations were significantly smaller after OLV with Vt = 5 mL/kg. These results indicate that MV may induce epithelial damage and a proinflammatory response in the ventilated lung. Reduction of tidal volume during OLV may reduce alveolar concentrations of TNF-&agr; and of sICAM-1.


Development | 2003

lockjaw encodes a zebrafish tfap2a required for early neural crest development.

Rob Knight; Sreelaja Nair; Sarah S. Nelson; Ali Afshar; Yashar Javidan; Robert Geisler; Gerd-Joerg Rauch; Thomas F. Schilling

The neural crest is a uniquely vertebrate cell type that gives rise to much of the craniofacial skeleton, pigment cells and peripheral nervous system, yet its specification and diversification during embryogenesis are poorly understood. Zebrafish homozygous for the lockjaw (low) mutation show defects in all of these derivatives and we show that low (allelic with montblanc) encodes a zebrafish tfap2a, one of a small family of transcription factors implicated in epidermal and neural crest development. A point mutation in low truncates the DNA binding and dimerization domains of tfap2a, causing a loss of function. Consistent with this, injection of antisense morpholino oligonucleotides directed against splice sites in tfap2a into wild-type embryos produces a phenotype identical to low. Analysis of early ectodermal markers revealed that neural crest specification and migration are disrupted in low mutant embryos. TUNEL labeling of dying cells in mutants revealed a transient period of apoptosis in crest cells prior to and during their migration. In the cranial neural crest, gene expression in the mandibular arch is unaffected in low mutants, in contrast to the hyoid arch, which shows severe reductions in dlx2 and hoxa2 expression. Mosaic analysis, using cell transplantation, demonstrated that neural crest defects in low are cell autonomous and secondarily cause disruptions in surrounding mesoderm. These studies demonstrate that low is required for early steps in neural crest development and suggest that tfap2a is essential for the survival of a subset of neural crest derivatives.


Current Biology | 1999

Pharyngeal arch patterning in the absence of neural crest

Emma Veitch; Jo Begbie; Thomas F. Schilling; Moya M. Smith; Anthony Graham

Pharyngeal arches are a prominent and critical feature of the developing vertebrate head. They constitute a series of bulges within which musculature and skeletal elements form; importantly, these tissues derive from different embryonic cell types [1]. Numerous studies have emphasised the role of the cranial neural crest, from which the skeletal components derive, in patterning the pharyngeal arches [2-4]. It has never been clear, however, whether all arch patterning is completely dependent on this cell type. Here, we show that pharyngeal arch formation is not coupled to the process of crest migration and, furthermore, that pharyngeal arches form, are regionalized and have a sense of identity even in the absence of the neural crest. Thus, vertebrate head morphogenesis can now be seen to be a more complex process than was previously believed and must result from an integration of both neural-crest-dependent and -independent patterning mechanisms. Our results also reflect the fact that the evolutionary origin of pharyngeal segmentation predates that of the neural crest, which is an exclusively vertebrate characteristic.


Critical Reviews in Oral Biology & Medicine | 2002

Molecular Dissection of Craniofacial Development Using Zebrafish

Pamela C. Yelick; Thomas F. Schilling

The zebrafish, Danio rerio, is a small, freshwater teleost that only began to be used as a vertebrate genetic model by the late George Streisinger in the early 1980s. The strengths of the zebrafish complement genetic studies in mice and embryological studies in avians. Its advantages include high fecundity, externally fertilized eggs and transparent embryos that can be easily manipulated, inexpensive maintenance, and the fact that large-scale mutagenesis screens can be performed. Here we review studies that have used the zebrafish as a model for craniofacial development. Lineage studies in zebrafish have defined the origins of the cranial skeleton at the single-cell level and followed the morphogenetic behaviors of these cells in skeletal condensations. Furthermore, genes identified by random mutational screening have now revealed genetic pathways controlling patterning of the jaw and other pharyngeal arches, as well as the midline of the skull, that are conserved between fish and humans. We discuss the potential impact of specialized mutagenesis screens and the future applications of this versatile, vertebrate developmental model system in the molecular dissection of craniofacial development.


Development | 2006

Retinoids signal directly to zebrafish endoderm to specify insulin -expressing β-cells

David A. Stafford; Richard J. White; Mary D. Kinkel; Angela Linville; Thomas F. Schilling; Victoria E. Prince

During vertebrate development, the endodermal germ layer becomes regionalized along its anteroposterior axis to give rise to a variety of organs, including the pancreas. Genetic studies in zebrafish and mice have established that the signaling molecule retinoic acid (RA) plays a crucial role in endoderm patterning and promotes pancreas development. To identify how RA signals to pancreatic progenitors in the endoderm, we have developed a novel cell transplantation technique, using the ability of the SOX32 transcription factor to confer endodermal identity, to selectively target reagents to (or exclude them from) the endodermal germ layer of the zebrafish. We show that RA synthesized in the anterior paraxial mesoderm adjacent to the foregut is necessary for the development of insulin-expressingβ -cells. Conversely, RA receptor function is required in the foregut endoderm for insulin expression, but not in mesoderm or ectoderm. We further show that activation of RA signal transduction in endoderm alone is sufficient to induce insulin expression. Our results reveal that RA is an instructive signal from the mesoderm that directly induces precursors of the endocrine pancreas. These findings suggest that RA will have important applications in the quest to induce islets from stem cells for therapeutic uses.


Anesthesiology | 2015

Protective versus Conventional Ventilation for Surgery: A Systematic Review and Individual Patient Data Meta-analysis.

Ary Serpa Neto; Sabrine N. T. Hemmes; Carmen Silvia Valente Barbas; Martin Beiderlinden; Michelle Biehl; Jan M. Binnekade; Jaume Canet; Ana Fernandez-Bustamante; Emmanuel Futier; Ognjen Gajic; Göran Hedenstierna; Markus W. Hollmann; Samir Jaber; Alf Kozian; Marc Licker; Wen Qian Lin; Andrew Maslow; Stavros G. Memtsoudis; Dinis Reis Miranda; Pierre Moine; Thomas Ng; Domenico Paparella; Christian Putensen; Marco Ranieri; Federica Scavonetto; Thomas F. Schilling; Werner Schmid; Gabriele Selmo; Paolo Severgnini; Juraj Sprung

Background:Recent studies show that intraoperative mechanical ventilation using low tidal volumes (VT) can prevent postoperative pulmonary complications (PPCs). The aim of this individual patient data meta-analysis is to evaluate the individual associations between VT size and positive end–expiratory pressure (PEEP) level and occurrence of PPC. Methods:Randomized controlled trials comparing protective ventilation (low VT with or without high levels of PEEP) and conventional ventilation (high VT with low PEEP) in patients undergoing general surgery. The primary outcome was development of PPC. Predefined prognostic factors were tested using multivariate logistic regression. Results:Fifteen randomized controlled trials were included (2,127 patients). There were 97 cases of PPC in 1,118 patients (8.7%) assigned to protective ventilation and 148 cases in 1,009 patients (14.7%) assigned to conventional ventilation (adjusted relative risk, 0.64; 95% CI, 0.46 to 0.88; P < 0.01). There were 85 cases of PPC in 957 patients (8.9%) assigned to ventilation with low VT and high PEEP levels and 63 cases in 525 patients (12%) assigned to ventilation with low VT and low PEEP levels (adjusted relative risk, 0.93; 95% CI, 0.64 to 1.37; P = 0.72). A dose–response relationship was found between the appearance of PPC and VT size (R2 = 0.39) but not between the appearance of PPC and PEEP level (R2 = 0.08). Conclusions:These data support the beneficial effects of ventilation with use of low VT in patients undergoing surgery. Further trials are necessary to define the role of intraoperative higher PEEP to prevent PPC during nonopen abdominal surgery.

Collaboration


Dive into the Thomas F. Schilling's collaboration.

Top Co-Authors

Avatar

Alf Kozian

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Thomas Hachenberg

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Moritz Kretzschmar

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Nie

University of California

View shared research outputs
Top Co-Authors

Avatar

Christof Huth

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Yashar Javidan

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge