Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas F. Webster is active.

Publication


Featured researches published by Thomas F. Webster.


Environmental Science & Technology | 2011

Identification of Flame Retardants in Polyurethane Foam Collected from Baby Products

Heather M. Stapleton; Susan Klosterhaus; Alex Keller; P. Lee Ferguson; Saskia van Bergen; Ellen M. Cooper; Thomas F. Webster; Arlene Blum

With the phase-out of PentaBDE in 2004, alternative flame retardants are being used in polyurethane foam to meet flammability standards. However, insufficient information is available on the identity of the flame retardants currently in use. Baby products containing polyurethane foam must meet California state furniture flammability standards, which likely affects the use of flame retardants in baby products throughout the U.S. However, it is unclear which products contain flame retardants and at what concentrations. In this study we surveyed baby products containing polyurethane foam to investigate how often flame retardants were used in these products. Information on when the products were purchased and whether they contained a label indicating that the product meets requirements for a California flammability standard were recorded. When possible, we identified the flame retardants being used and their concentrations in the foam. Foam samples collected from 101 commonly used baby products were analyzed. Eighty samples contained an identifiable flame retardant additive, and all but one of these was either chlorinated or brominated. The most common flame retardant detected was tris(1,3-dichloroisopropyl) phosphate (TDCPP; detection frequency 36%), followed by components typically found in the Firemaster550 commercial mixture (detection frequency 17%). Five samples contained PBDE congeners commonly associated with PentaBDE, suggesting products with PentaBDE are still in-use. Two chlorinated organophosphate flame retardants (OPFRs) not previously documented in the environment were also identified, one of which is commercially sold as V6 (detection frequency 15%) and contains tris(2-chloroethyl) phosphate (TCEP) as an impurity. As an addition to this study, we used a portable X-ray fluorescence (XRF) analyzer to estimate the bromine and chlorine content of the foam and investigate whether XRF is a useful method for predicting the presence of halogenated flame retardant additives in these products. A significant correlation was observed for bromine; however, there was no significant relationship observed for chlorine. To the authors knowledge, this is the first study to report on flame retardants in baby products. In addition, we have identified two chlorinated OPFRs not previously documented in the environment or in consumer products. Based on exposure estimates conducted by the Consumer Product Safety Commission (CPSC), we predict that infants may receive greater exposure to TDCPP from these products compared to the average child or adult from upholstered furniture, all of which are higher than acceptable daily intake levels of TDCPP set by the CPSC. Future studies are therefore warranted to specifically measure infants exposure to these flame retardants from intimate contact with these products and to determine if there are any associated health concerns.


Environmental Health | 2008

Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999-2002.

Elizabeth E. Hatch; Jessica W. Nelson; M. Mustafa Qureshi; Janice Weinberg; Lynn L. Moore; Martha R. Singer; Thomas F. Webster

BackgroundAlthough diet and activity are key factors in the obesity epidemic, laboratory studies suggest that endocrine disrupting chemicals may also affect obesity.MethodsWe analyzed associations between six phthalate metabolites measured in urine and body mass index (BMI) and waist circumference (WC) in National Health and Nutrition Examination Survey (NHANES) participants aged 6–80. We included 4369 participants from NHANES 1999–2002, with data on mono-ethyl (MEP), mono-2-ethylhexyl (MEHP), mono-n-butyl (MBP), and mono-benzyl (MBzP) phthalate; 2286 also had data on mono-2-ethyl-5-hydroxyhexyl (MEHHP) and mono-2-ethyl-5-oxohexyl (MEOHP) phthalate (2001–2002). Using multiple regression, we computed mean BMI and WC within phthalate quartiles in eight age/gender specific models.ResultsThe most consistent associations were in males aged 20–59; BMI and WC increased across quartiles of MBzP (adjusted mean BMI = 26.7, 27.2, 28.4, 29.0, p-trend = 0.0002), and positive associations were also found for MEOHP, MEHHP, MEP, and MBP. In females, BMI and WC increased with MEP quartile in adolescent girls (adjusted mean BMI = 22.9, 23.8, 24.1, 24.7, p-trend = 0.03), and a similar but less strong pattern was seen in 20–59 year olds. In contrast, MEHP was inversely related to BMI in adolescent girls (adjusted mean BMI = 25.4, 23.8, 23.4, 22.9, p-trend = 0.02) and females aged 20–59 (adjusted mean BMI = 29.9, 29.9, 27.9, 27.6, p-trend = 0.02). There were no important associations among children, but several inverse associations among 60–80 year olds.ConclusionThis exploratory, cross-sectional analysis revealed a number of interesting associations with different phthalate metabolites and obesity outcomes, including notable differences by gender and age subgroups. Effects of endocrine disruptors, such as phthalates, may depend upon endogenous hormone levels, which vary dramatically by age and gender. Individual phthalates also have different biologic and hormonal effects. Although our study has limitations, both of these factors could explain some of the variation in the observed associations. These preliminary data support the need for prospective studies in populations at risk for obesity.


Environmental Science & Technology | 2012

Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out.

Heather M. Stapleton; Smriti Sharma; Gordon J. Getzinger; P. Lee Ferguson; Michelle Gabriel; Thomas F. Webster; Arlene Blum

California’s furniture flammability standard Technical Bulletin 117 (TB 117) is believed to be a major driver of chemical flame retardant (FR) use in residential furniture in the United States. With the phase-out of the polybrominated diphenyl ether (PBDE) FR mixture PentaBDE in 2005, alternative FRs are increasingly being used to meet TB 117; however, it was unclear which chemicals were being used and how frequently. To address this data gap, we collected and analyzed 102 samples of polyurethane foam from residential couches purchased in the United States from 1985 to 2010. Overall, we detected chemical flame retardants in 85% of the couches. In samples purchased prior to 2005 (n = 41) PBDEs associated with the PentaBDE mixture including BDEs 47, 99, and 100 (PentaBDE) were the most common FR detected (39%), followed by tris(1,3-dichloroisopropyl) phosphate (TDCPP; 24%), which is a suspected human carcinogen. In samples purchased in 2005 or later (n = 61) the most common FRs detected were TDCPP (52%) and components associated with the Firemaster550 (FM 550) mixture (18%). Since the 2005 phase-out of PentaBDE, the use of TDCPP increased significantly. In addition, a mixture of nonhalogenated organophosphate FRs that included triphenyl phosphate (TPP), tris(4-butylphenyl) phosphate (TBPP), and a mix of butylphenyl phosphate isomers were observed in 13% of the couch samples purchased in 2005 or later. Overall the prevalence of flame retardants (and PentaBDE) was higher in couches bought in California compared to elsewhere, although the difference was not quite significant (p = 0.054 for PentaBDE). The difference was greater before 2005 than after, suggesting that TB 117 is becoming a de facto standard across the U.S. We determined that the presence of a TB 117 label did predict the presence of a FR; however, lack of a label did not predict the absence of a flame retardant. Following the PentaBDE phase out, we also found an increased number of flame retardants on the market. Given these results, and the potential for human exposure to FRs, health studies should be conducted on the types of FRs identified here.


Environment International | 2008

Critical factors in assessing exposure to PBDEs via house dust.

Joseph G. Allen; Michael D. McClean; Heather M. Stapleton; Thomas F. Webster

Assessment of indoor exposure to polybrominated diphenyl ethers (PBDEs) requires a critical examination of methods that may influence exposure estimates and comparisons between studies. We measured PBDEs in residential dust collected from 20 homes in Boston, MA, to examine 5 key questions: 1) Does the choice of dust exposure metric-e.g., concentration (ng/g) or dust loading (ng/m2)-affect analysis and results? 2) To what degree do dust concentrations change over time? 3) Do dust concentrations vary between rooms? 4) Is the home vacuum bag an acceptable surrogate for researcher-collected dust? 5) Are air and dust concentrations correlated for the same room? We used linear mixed-effects models to analyze the data while accounting for within-home and within-room correlations. We found that PBDE dust concentration and surface loading were highly correlated (r=0.86-0.95, p<0.001). Average dust concentrations did not significantly differ over an 8-month period, possibly because home furnishings changed little over this time. We observed significant differences between rooms in the same home: PBDE concentrations in the main living area were 97% higher than the bedroom for decaBDE (p=0.02) and 72% higher for pentaBDE (p=0.05). Home vacuum bag dust concentrations were significantly lower than researcher-collected dust and not strongly correlated. Air (vapor and particulate phase) and dust concentrations were correlated for pentaBDE (p=0.62, p<0.01), but not for decaBDE (p=0.25). In addition, potential markers of BDE 209 debromination (BDE 202 and the BDE197:BDE201 ratio) were also observed in household dust samples. One vacuum bag sample contained the highest concentrations of BDE 209 (527,000 ng/g) and total PBDEs (544,000 ng/g) that have been reported in house dust.


Environmental Health Perspectives | 2009

Exposure to Polyfluoroalkyl Chemicals and Cholesterol, Body Weight, and Insulin Resistance in the General U.S. Population

Jessica W. Nelson; Elizabeth E. Hatch; Thomas F. Webster

Background Polyfluoroalkyl chemicals (PFCs) are used commonly in commercial applications and are detected in humans and the environment worldwide. Concern has been raised that they may disrupt lipid and weight regulation. Objectives We investigated the relationship between PFC serum concentrations and lipid and weight outcomes in a large publicly available data set. Methods We analyzed data from the 2003–2004 National Health and Nutrition Examination Survey (NHANES) for participants 12–80 years of age. Using linear regression to control for covariates, we studied the association between serum concentrations of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS) and measures of cholesterol, body size, and insulin resistance. Results We observed a positive association between concentrations of PFOS, PFOA, and PFNA and total and non-high-density cholesterol. We found the opposite for PFHxS. Those in the highest quartile of PFOS exposure had total cholesterol levels 13.4 mg/dL [95% confidence interval (CI), 3.8–23.0] higher than those in the lowest quartile. For PFOA, PFNA, and PFHxS, effect estimates were 9.8 (95% CI, −0.2 to 19.7), 13.9 (95% CI, 1.9–25.9), and −7.0 (95% CI, −13.2 to −0.8), respectively. A similar pattern emerged when exposures were modeled continuously. We saw little evidence of a consistent association with body size or insulin resistance. Conclusions This exploratory cross-sectional study is consistent with other epidemiologic studies in finding a positive association between PFOS and PFOA and cholesterol, despite much lower exposures in NHANES. Results for PFNA and PFHxS are novel, emphasizing the need to study PFCs other than PFOS and PFOA.


Environmental Health Perspectives | 2012

Serum PBDEs in a North Carolina toddler cohort: associations with handwipes, house dust, and socioeconomic variables.

Heather M. Stapleton; Sarah Eagle; Andreas Sjödin; Thomas F. Webster

Background: Polybrominated diphenyl ethers (PBDEs) are persistent, bioaccumulative, and endocrine-disrupting chemicals. Objectives: We used handwipes to estimate exposure to PBDEs in house dust among toddlers and examined sex, age, breast-feeding, race, and parents’ education as predictors of serum PBDEs. Methods: Eighty-three children from 12 to 36 months of age were enrolled in North Carolina between May 2009 and November 2010. Blood, handwipe, and house dust samples were collected and analyzed for PBDEs. A questionnaire was administered to collect demographic data. Results: PBDEs were detected in all serum samples (geometric mean for ΣpentaBDE in serum was 43.3 ng/g lipid), 98% of the handwipe samples, and 100% of the dust samples. Serum ΣpentaBDEs were significantly correlated with both handwipe and house dust ΣpentaBDE levels, but were more strongly associated with handwipe levels (r = 0.57; p < 0.001 vs. r = 0.35; p < 0.01). Multivariate model estimates revealed that handwipe levels, child’s sex, child’s age, and father’s education accounted for 39% of the variation in serum ΣBDE3 levels (sum of BDEs 47, 99, and 100). In contrast, age, handwipe levels, and breast-feeding duration explained 39% of the variation in serum BDE 153. Conclusions: Our study suggests that hand-to-mouth activity may be a significant source of exposure to PBDEs. Furthermore, age, socioeconomic status, and breast-feeding were significant predictors of exposure, but associations varied by congener. Specifically, serum ΣBDE3 was inversely associated with socioeconomic status, whereas serum BDE-153 was positively associated with duration of breast-feeding and mother’s education.


Environmental Health Perspectives | 2010

Exposure to Polyfluoroalkyl Chemicals and Attention Deficit/Hyperactivity Disorder in U.S. Children 12–15 Years of Age

Kate Hoffman; Thomas F. Webster; Marc G. Weisskopf; Janice Weinberg; Verónica M. Vieira

Background Polyfluoroalkyl chemicals (PFCs) have been widely used in consumer products. Exposures in the United States and in world populations are widespread. PFC exposures have been linked to various health impacts, and data in animals suggest that PFCs may be potential developmental neurotoxicants. Objectives We evaluated the associations between exposures to four PFCs and parental report of diagnosis of attention deficit/hyperactivity disorder (ADHD). Methods Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 1999–2000 and 2003–2004 for children 12–15 years of age. Parental report of a previous diagnosis by a doctor or health care professional of ADHD in the child was the primary outcome measure. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) levels were measured in serum samples from each child. Results Parents reported that 48 of 571 children included in the analysis had been diagnosed with ADHD. The adjusted odds ratio (OR) for parentally reported ADHD in association with a 1-μg/L increase in serum PFOS (modeled as a continuous predictor) was 1.03 [95% confidence interval (CI), 1.01–1.05]. Adjusted ORs for 1-μg/L increases in PFOA and PFHxS were also statistically significant (PFOA: OR = 1.12; 95% CI, 1.01–1.23; PFHxS: OR = 1.06; 95% CI, 1.02–1.11), and we observed a nonsignificant positive association with PFNA (OR = 1.32; 95% CI, 0.86–2.02). Conclusions Our results, using cross-sectional data, are consistent with increased odds of ADHD in children with higher serum PFC levels. Given the extremely prevalent exposure to PFCs, follow-up of these data with cohort studies is needed.


International Journal of Andrology | 2010

Association of endocrine disruptors and obesity: perspectives from epidemiological studies.

Elizabeth E. Hatch; Jessica W. Nelson; Richard W. Stahlhut; Thomas F. Webster

Although changes in diet and physical activity are undoubtedly key causal factors related to the increase in obesity, there is growing interest in the possibility that endocrine disrupting chemicals (EDCs) may affect obesity-related pathways by altering cell signalling involved in weight and lipid homeostasis. Proposed mechanisms that could underlie associations between EDCs and obesity include effects on thyroid and steroid hormones, and activation of peroxisome proliferator-activated receptors, which play a major role in adipocyte differentiation and energy storage. Most evidence supporting the hypothesis that EDCs affect obesity comes from laboratory studies. We summarize the limited epidemiological literature on the topic, including prospective studies of human prenatal exposure to EDCs. We also present findings from a cross-sectional study of levels of six phthalate metabolites and body mass index (BMI) and waist circumference (WC), using data from the U.S. National Health and Nutrition Examination Survey. We found positive associations between BMI and WC among adult males for most phthalate metabolites. For example, in males aged 20-59, the adjusted mean BMI across quartiles of mono-benzyl phthalate was 26.7, 27.2, 28.4, 29.0 (p-trend = 0.0002). In females, BMI and WC increased with quartiles of mono-ethyl phthalate in 12-19 year olds (adjusted mean BMI = 22.9, 23.8, 24.1, 24.7, p-trend = 0.03), and a similar but less strong pattern was seen in 20-59 year olds. By contrast, higher levels of mono-2-ethylhexyl phthalate were associated with lower BMI in adolescent girls and females aged 20-59. This exploratory analysis found several associations between phthalate metabolites and obesity, including notable differences by gender. However, the cross-sectional data are a limitation. Additional prospective studies of the association between exposures to EDCs, especially during development, and obesity are warranted. As this field of research advances, there are challenging methodological questions that must be considered by both epidemiologists and toxicologists.


Environmental Health Perspectives | 2011

Exposure to PBDEs in the office environment: evaluating the relationships between dust, handwipes, and serum.

Deborah J. Watkins; Michael D. McClean; Alicia J. Fraser; Janice Weinberg; Heather M. Stapleton; Andreas Sjödin; Thomas F. Webster

Background: Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in consumer products and are ubiquitous in residential indoor air and dust. However, little is known about exposure in the office environment. Objectives: We examined relationships between PBDE concentrations in the office environment and internal exposure using concurrent measurements of PBDEs in serum, handwipes, and office dust. Methods: We collected serum, dust, and handwipe samples from 31 participants who spent at least 20 hr/week in an office. We used a questionnaire to collect information about work and personal habits. Results: We found positive associations between PBDEs in room dust, handwipes (a measure of personal exposure), and serum. PBDE office dust concentrations were weakly correlated with measurements in handwipes: r = 0.35 (p = 0.06) for pentaBDE (sum of BDE congeners 28/33, 47, 99, 100, and 153) and 0.33 (p = 0.07) for BDE-209. Hand washing also predicted pentaBDE levels in handwipes: low hand-washers had 3.3 times the pentaBDE levels in their handwipes than did high hand-washers (p = 0.02). PentaBDE in handwipes predicted pentaBDE levels in serum (p = 0.03): Serum concentrations in the highest handwipe tertile were on average 3.5 times the lowest handwipe tertile. The geometric mean concentration of pentaBDEs in serum was 27 ng/g lipid. We detected BDE-209 in 20% of serum samples, at levels ranging from < 4.8 to 9.7 ng/g lipid. Conclusion: Our research suggests that exposure to pentaBDE in the office environment contributes to pentaBDE body burden, with exposure likely linked to PBDE residues on hands. In addition, hand washing may decrease exposure to PBDEs.


Environmental Health Perspectives | 2009

Diet contributes significantly to the body burden of PBDEs in the general U.S. population.

Alicia J. Fraser; Thomas F. Webster; Michael D. McClean

BACKGROUND Exposure of the U.S. population to polybrominated diphenyl ethers (PBDEs) is thought to be via exposure to dust and diet. However, little work has been done to empirically link body burdens of these compounds to either route of exposure. OBJECTIVES The primary goal of this research was to evaluate the dietary contribution to PBDE body burdens in the United States by linking serum levels to food intake. METHODS We used two dietary instruments--a 24-hr food recall (24FR) and a 1-year food frequency questionnaire (FFQ)--to examine food intake among participants of the 2003-2004 National Health and Nutrition Examination Survey. We regressed serum concentrations of five PBDEs (BDE congeners 28, 47, 99, 100, and 153) and their sum (Sigma PBDE) against diet variables while adjusting for age, sex, race/ethnicity, income, and body mass index. RESULTS Sigma PBDE serum concentrations among vegetarians were 23% (p = 0.006) and 27% (p = 0.009) lower than among omnivores for 24FR and 1-year FFQ, respectively. Serum levels of five PBDE congeners were associated with consumption of poultry fat: Low, medium, and high intake corresponded to geometric mean Sigma PBDE concentrations of 40.6, 41.9, and 48.3 ng/g lipid, respectively (p = 0.0005). We observed similar trends for red meat fat, which were statistically significant for BDE-100 and BDE-153. No association was observed between serum PBDEs and consumption of dairy or fish. Results were similar for both dietary instruments but were more robust using 24FR. CONCLUSIONS Intake of contaminated poultry and red meat contributes significantly to PBDE body burdens in the United States.

Collaboration


Dive into the Thomas F. Webster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge