Thomas Franosch
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Franosch.
Reports on Progress in Physics | 2013
Felix Höfling; Thomas Franosch
A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.
Physical Review Letters | 2003
Andrea Parmeggiani; Thomas Franosch; Erwin Frey
We study a one-dimensional totally asymmetric exclusion process with random particle attachments and detachments in the bulk. The resulting dynamics leads to unexpected stationary regimes for large but finite systems. Such regimes are characterized by a phase coexistence of low and high density regions separated by domain walls. We use a mean-field approach to interpret the numerical results obtained by Monte Carlo simulations, and we predict the phase diagram of this nonconserved dynamics in the thermodynamic limit.
Nature | 2011
Thomas Franosch; Matthias Grimm; Maxim Belushkin; Flavio M. Mor; Giuseppe Foffi; László Forró; Sylvia Jeney
Observation of the Brownian motion of a small probe interacting with its environment provides one of the main strategies for characterizing soft matter. Essentially, two counteracting forces govern the motion of the Brownian particle. First, the particle is driven by rapid collisions with the surrounding solvent molecules, referred to as thermal noise. Second, the friction between the particle and the viscous solvent damps its motion. Conventionally, the thermal force is assumed to be random and characterized by a Gaussian white noise spectrum. The friction is assumed to be given by the Stokes drag, suggesting that motion is overdamped at long times in particle tracking experiments, when inertia becomes negligible. However, as the particle receives momentum from the fluctuating fluid molecules, it also displaces the fluid in its immediate vicinity. The entrained fluid acts back on the particle and gives rise to long-range correlations. This hydrodynamic ‘memory’ translates to thermal forces, which have a coloured, that is, non-white, noise spectrum. One hundred years after Perrin’s pioneering experiments on Brownian motion, direct experimental observation of this colour is still elusive. Here we measure the spectrum of thermal noise by confining the Brownian fluctuations of a microsphere in a strong optical trap. We show that hydrodynamic correlations result in a resonant peak in the power spectral density of the sphere’s positional fluctuations, in strong contrast to overdamped systems. Furthermore, we demonstrate different strategies to achieve peak amplification. By analogy with microcantilever-based sensors, our results reveal that the particle–fluid–trap system can be considered a nanomechanical resonator in which the intrinsic hydrodynamic backflow enhances resonance. Therefore, instead of being treated as a disturbance, details in thermal noise could be exploited for the development of new types of sensor and particle-based assay in lab-on-a-chip applications.
Physical Review Letters | 2006
Felix Höfling; Thomas Franosch; Erwin Frey
The localization transition and the critical properties of the Lorentz model in three dimensions are investigated by computer simulations. We give a coherent and quantitative explanation of the dynamics in terms of continuum percolation theory and obtain an excellent matching of the critical density and exponents. Within a dynamic scaling ansatz incorporating two divergent length scales we achieve data collapse for the mean-square displacements and identify the leading corrections to scaling. We provide evidence for a divergent non-Gaussian parameter close to the transition.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Börn Meier; Alejandro Zielinski; Christoph A. Weber; Delphine Arcizet; Simon Youssef; Thomas Franosch; Joachim O. Rädler; Doris Heinrich
Directed cell migration toward spatio-temporally varying chemotactic stimuli requires rapid cytoskeletal reorganization. Numerous studies provide evidence that actin reorganization is controlled by intracellular redistribution of signaling molecules, such as the PI4,5P2/PI3,4,5P3 gradient. However, exploring underlying mechanisms is difficult and requires careful spatio-temporal control of external chemotactic stimuli. We designed a microfluidic setup to generate alternating chemotactic gradient fields for simultaneous multicell exposure, greatly facilitating statistical analysis. For a quantitative description of intracellular response dynamics, we apply alternating time sequences of spatially homogeneous concentration gradients across 300 μm, reorienting on timescales down to a few seconds. Dictyostelium discoideum amoebae respond to gradient switching rates below 0.02 Hz by readapting their migration direction. For faster switching, cellular repolarization ceases and is completely stalled at 0.1 Hz. In this “chemotactically trapped” cell state, external stimuli alternate faster than intracellular feedback is capable to respond by onset of directed migration. To investigate intracellular actin cortex rearrangement during gradient switching, we correlate migratory cell response with actin repolymerization dynamics, quantified by a fluorescence distribution moment of the GFP fusion protein LimEΔcc. We find two fundamentally different cell polarization types and we could reveal the role of PI3-Kinase for cellular repolarization. In the early aggregation phase, PI3-Kinase enhances the capability of D. discoideum cells to readjust their polarity in response to spatially alternating gradient fields, whereas in aggregation competent cells the effect of PI3-Kinase perturbation becomes less relevant.
Physical Review Letters | 2006
Tobias Reichenbach; Thomas Franosch; Erwin Frey
We introduce driven exclusion processes with internal states that serve as generic transport models in various contexts, ranging from molecular or vehicular traffic on parallel lanes to spintronics. The ensuing nonequilibrium steady states are controllable by boundary as well as bulk rates. A striking polarization phenomenon accompanied by domain wall motion and delocalization is discovered within a mesoscopic scaling. We quantify this observation within an analytic description providing exact phase diagrams. Our results are confirmed by stochastic simulations.
Physical Review Letters | 2010
Simon Lang; Vitalie Boţan; Martin Oettel; David Hajnal; Thomas Franosch; Rolf Schilling
Extending mode-coupling theory, we elaborate a microscopic theory for the glass transition of liquids confined between two parallel flat hard walls. The theory contains the standard mode-coupling theory equations in bulk and in two dimensions as limiting cases and requires as input solely the equilibrium density profile and the structure factors of the fluid in confinement. We evaluate the phase diagram as a function of the distance of the plates for the case of a hard sphere fluid and obtain an oscillatory behavior of the glass transition line as a result of the structural changes related to layering.
Physical Review Letters | 2007
Felix Höfling; Thomas Franosch
The long-time behavior of transport coefficients in a model for spatially heterogeneous media in two and three dimensions is investigated by molecular dynamics simulations. The behavior of the velocity autocorrelation function is rationalized in terms of a competition of the critical relaxation due to the underlying percolation transition and the hydrodynamic power-law anomalies. In two dimensions and in the absence of a diffusive mode, another power-law anomaly due to trapping is found with an exponent -3 instead of -2. Further, the logarithmic divergence of the Burnett coefficient is corroborated in the dilute limit; at finite density, however, it is dominated by stronger divergences.
Physical Review Letters | 2008
Sylvia Jeney; Branimir Lukić; Jonas A. Kraus; Thomas Franosch; László Forró
The motion of an optically trapped sphere constrained by the vicinity of a wall is investigated at times where hydrodynamic memory is significant. First, we quantify, in bulk, the influence of confinement arising from the trapping potential on the spheres velocity autocorrelation function C(t). Next, we study the splitting of C(t) into C_{parallel}(t) and C_{perpendicular}(t), when the sphere is approached towards a surface. Thereby, we monitor the crossover from a slow t{-3/2} long-time tail, away from the wall, to a faster t{-5/2} decay, due to the subtle interplay between hydrodynamic backflow and wall effects. Finally, we discuss the resulting asymmetric time-dependent diffusion coefficients.
Journal of Chemical Physics | 2008
Felix Höfling; Tobias Munk; Erwin Frey; Thomas Franosch
The dynamic properties of a classical tracer particle in a random, disordered medium are investigated close to the localization transition. For Lorentz models obeying Newtonian and diffusive motion at the microscale, we have performed large-scale computer simulations, demonstrating that universality holds at long times in the immediate vicinity of the transition. The scaling function describing the crossover from anomalous transport to diffusive motion is found to vary extremely slowly and spans at least five decades in time. To extract the scaling function, one has to allow for the leading universal corrections to scaling. Our findings suggest that apparent power laws with varying exponents generically occur and dominate experimentally accessible time windows as soon as the heterogeneities cover a decade in length scale. We extract the divergent length scales, quantify the spatial heterogeneities in terms of the non-Gaussian parameter, and corroborate our results by a thorough finite-size analysis.