Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas G. Kaye is active.

Publication


Featured researches published by Thomas G. Kaye.


PLOS ONE | 2008

Lakeside Cemeteries in the Sahara: 5000 Years of Holocene Population and Environmental Change

Paul C. Sereno; Elena A.A. Garcea; Hélène Jousse; Christopher M. Stojanowski; Jean François Saliège; Abdoulaye Maga; Oumarou Ide; Kelly J. Knudson; Anna Maria Mercuri; Thomas W. Stafford; Thomas G. Kaye; Carlo Giraudi; Isabella Massamba N'siala; Enzo Cocca; Hannah M. Moots; Didier B. Dutheil; Jeffrey P. Stivers

Background Approximately two hundred human burials were discovered on the edge of a paleolake in Niger that provide a uniquely preserved record of human occupation in the Sahara during the Holocene (∼8000 B.C.E. to the present). Called Gobero, this suite of closely spaced sites chronicles the rapid pace of biosocial change in the southern Sahara in response to severe climatic fluctuation. Methodology/Principal Findings Two main occupational phases are identified that correspond with humid intervals in the early and mid-Holocene, based on 78 direct AMS radiocarbon dates on human remains, fauna and artifacts, as well as 9 OSL dates on paleodune sand. The older occupants have craniofacial dimensions that demonstrate similarities with mid-Holocene occupants of the southern Sahara and Late Pleistocene to early Holocene inhabitants of the Maghreb. Their hyperflexed burials compose the earliest cemetery in the Sahara dating to ∼7500 B.C.E. These early occupants abandon the area under arid conditions and, when humid conditions return ∼4600 B.C.E., are replaced by a more gracile people with elaborated grave goods including animal bone and ivory ornaments. Conclusions/Significance The principal significance of Gobero lies in its extraordinary human, faunal, and archaeological record, from which we conclude the following: The early Holocene occupants at Gobero (7700–6200 B.C.E.) were largely sedentary hunter-fisher-gatherers with lakeside funerary sites that include the earliest recorded cemetery in the Sahara. Principal components analysis of craniometric variables closely allies the early Holocene occupants at Gobero with a skeletally robust, trans-Saharan assemblage of Late Pleistocene to mid-Holocene human populations from the Maghreb and southern Sahara. Gobero was abandoned during a period of severe aridification possibly as long as one millennium (6200–5200 B.C.E). More gracile humans arrived in the mid-Holocene (5200–2500 B.C.E.) employing a diversified subsistence economy based on clams, fish, and savanna vertebrates as well as some cattle husbandry. Population replacement after a harsh arid hiatus is the most likely explanation for the occupational sequence at Gobero. We are just beginning to understand the anatomical and cultural diversity that existed within the Sahara during the Holocene.


PLOS ONE | 2008

Dinosaurian soft tissues interpreted as bacterial biofilms.

Thomas G. Kaye; Gary Gaugler; Zbigniew Sawlowicz

A scanning electron microscope survey was initiated to determine if the previously reported findings of “dinosaurian soft tissues” could be identified in situ within the bones. The results obtained allowed a reinterpretation of the formation and preservation of several types of these “tissues” and their content. Mineralized and non-mineralized coatings were found extensively in the porous trabecular bone of a variety of dinosaur and mammal species across time. They represent bacterial biofilms common throughout nature. Biofilms form endocasts and once dissolved out of the bone, mimic real blood vessels and osteocytes. Bridged trails observed in biofilms indicate that a previously viscous film was populated with swimming bacteria. Carbon dating of the film points to its relatively modern origin. A comparison of infrared spectra of modern biofilms with modern collagen and fossil bone coatings suggests that modern biofilms share a closer molecular make-up than modern collagen to the coatings from fossil bones. Blood cell size iron-oxygen spheres found in the vessels were identified as an oxidized form of formerly pyritic framboids. Our observations appeal to a more conservative explanation for the structures found preserved in fossil bone.


Current Biology | 2016

3D Camouflage in an Ornithischian Dinosaur

Jakob Vinther; Robert Nicholls; Stephan Lautenschlager; Michael Pittman; Thomas G. Kaye; Emily J. Rayfield; Gerald Mayr; Innes C. Cuthill

Summary Countershading was one of the first proposed mechanisms of camouflage [1, 2]. A dark dorsum and light ventrum counteract the gradient created by illumination from above, obliterating cues to 3D shape [3, 4, 5, 6]. Because the optimal countershading varies strongly with light environment [7, 8, 9], pigmentation patterns give clues to an animal’s habitat. Indeed, comparative evidence from ungulates [9] shows that interspecific variation in countershading matches predictions: in open habitats, where direct overhead sunshine dominates, a sharp dark-light color transition high up the body is evident; in closed habitats (e.g., under forest canopy), diffuse illumination dominates and a smoother dorsoventral gradation is found. We can apply this approach to extinct animals in which the preservation of fossil melanin allows reconstruction of coloration [10, 11, 12, 13, 14, 15]. Here we present a study of an exceptionally well-preserved specimen of Psittacosaurus sp. from the Chinese Jehol biota [16, 17]. This Psittacosaurus was countershaded [16] with a light underbelly and tail, whereas the chest was more pigmented. Other patterns resemble disruptive camouflage, whereas the chin and jugal bosses on the face appear dark. We projected the color patterns onto an anatomically accurate life-size model in order to assess their function experimentally. The patterns are compared to the predicted optimal countershading from the measured radiance patterns generated on an identical uniform gray model in direct versus diffuse illumination. These studies suggest that Psittacosaurus sp. inhabited a closed habitat such as a forest with a relatively dense canopy. Video Abstract


PLOS ONE | 2015

Laser-Stimulated Fluorescence in Paleontology

Thomas G. Kaye; Amanda R. Falk; Michael Pittman; Paul C. Sereno; Larry D. Martin; David A. Burnham; Enpu Gong; Xing Xu; Yinan Wang

Fluorescence using ultraviolet (UV) light has seen increased use as a tool in paleontology over the last decade. Laser-stimulated fluorescence (LSF) is a next generation technique that is emerging as a way to fluoresce paleontological specimens that remain dark under typical UV. A laser’s ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce. Presented here are five paleontological case histories that illustrate the technique across a broad range of specimens and scales. Novel uses such as back-lighting opaque specimens to reveal detail and detection of specimens completely obscured by matrix are highlighted in these examples. The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers. This technology has the potential to automate multiple aspects of paleontology, including preparation and sorting of microfossils. This represents a highly cost-effective way to address paleontologys preparatory bottleneck.


Nature Communications | 2017

Basal paravian functional anatomy illuminated by high-detail body outline

Xiaoli Wang; Michael Pittman; Xiaoting Zheng; Thomas G. Kaye; Amanda R. Falk; Scott A. Hartman; Xing Xu

Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit.


Planetary and Space Science | 2015

Results from the worldwide coma morphology campaign for comet ISON (C/2012 S1)☆

Nalin H. Samarasinha; Beatrice E. A. Mueller; Matthew M. Knight; Tony L. Farnham; John Briol; Noah Brosch; John Caruso; Xing Gao; Edward Leocadio Gomez; Tim Lister; Carl W. Hergenrother; Susan Hoban; Roy Prouty; Mike Holloway; N. C. Howes; E. Guido; Man-To Hui; Joseph H. Jones; Tyler B. Penland; Samuel R. Thomas; Jim Wyrosdick; Nikolai Kiselev; Aleksandra V. Ivanova; Thomas G. Kaye; Jean-Baptist Kikwaya Eluo; Betty P.S. Lau; Z.-Y. Lin; José Luis Martin; A. S. Moskvitin; M. Nicolini

We present the results of a global coma morphology campaign for comet C/2012 S1 (ISON), which was organized to involve both professional and amateur observers. In response to the campaign, many hundreds of images, from nearly two dozen groups were collected. Images were taken primarily in the continuum, which help to characterize the behavior of dust in the coma of comet ISON. The campaign received images from January 12 through November 22, 2013 (an interval over which the heliocentric distance decreased from 5.1 AU to 0.35 AU), allowing monitoring of the long-term evolution of coma morphology during comet ISON׳s pre-perihelion leg. Data were contributed by observers spread around the world, resulting in particularly good temporal coverage during November when comet ISON was brightest but its visibility was limited from any one location due to the small solar elongation. We analyze the northwestern sunward continuum coma feature observed in comet ISON during the first half of 2013, finding that it was likely present from at least February through May and did not show variations on diurnal time scales. From these images we constrain the grain velocities to ~10 m s−1, and we find that the grains spent 2–4 weeks in the sunward side prior to merging with the dust tail. We present a rationale for the lack of continuum coma features from September until mid-November 2013, determining that if the feature from the first half of 2013 was present, it was likely too small to be clearly detected. We also analyze the continuum coma morphology observed subsequent to the November 12 outburst, and constrain the first appearance of new features in the continuum to later than November 13.99 UT.


PLOS ONE | 2016

Laser Fluorescence Illuminates the Soft Tissue and Life Habits of the Early Cretaceous Bird Confuciusornis

Amanda R. Falk; Thomas G. Kaye; Zhonghe Zhou; David A. Burnham; Matthew D. Shawkey

In this paper we report the discovery of non-plumage soft tissues in Confuciusornis, a basal beaked bird from the Early Cretaceous Jehol Biota in northeastern China. Various soft tissues are visualized and interpreted through the use of laser-stimulated fluorescence, providing much novel anatomical information about this early bird, specifically reticulate scales covering the feet, and the well-developed and robust pro- and postpatagium. We also include a direct comparison between the forelimb soft tissues of Confuciusornis and modern avian patagia. Furthermore, apparently large, fleshy phalangeal pads are preserved on the feet. The reticulate scales, robust phalangeal pads as well as the highly recurved pedal claws strongly support Confuciusornis as an arboreal bird. Reticulate scales are more rounded than scutate scales and do not overlap, thus allowing for more flexibility in the toe. The extent of the pro- and postpatagium and the robust primary feather rachises are evidence that Confuciusornis was capable of powered flight, contrary to previous reports suggesting otherwise. A unique avian wing shape is also reconstructed based on plumage preserved. These soft tissues combined indicate an arboreal bird with the capacity for short-term (non-migratory) flight, and suggest that, although primitive, Confuciusornis already possessed many relatively advanced avian anatomical characteristics.


The Astrophysical Journal | 2015

The Physical Characterization of the Potentially Hazardous Asteroid 2004 Bl86: A Fragment of a Differentiated Asteroid

Vishnu Reddy; Bruce L. Gary; Juan A. Sanchez; Driss Takir; Cristina A. Thomas; Paul S. Hardersen; Yenal Ogmen; Paul Benni; Thomas G. Kaye; Joao Gregorio; Joe Garlitz; David Polishook; Lucille Le Corre; A. Nathues

The physical characterization of potentially hazardous asteroids (PHAs) is important for impact hazard assessment and evaluating mitigation options. Close flybys of PHAs provide an opportunity to study their surface photometric and spectral properties that enable the identification of their source regions in the main asteroid belt. We observed PHA (357439) 2004 BL86 during a close flyby of the Earth at a distance of 1.2 million km (0.0080 AU) on 2015 January 26, with an array of ground-based telescopes to constrain its photometric and spectral properties. Lightcurve observations showed that the asteroid was a binary and subsequent radar observations confirmed the binary nature and gave a primary diameter of 300 m and a secondary diameter of 50–100 m. Our photometric observations were used to derive the phase curve of 2004 BL86 in the V-band. Two different photometric functions were fitted to this phase curve, the IAU H–G model and the Shevchenko model. From the fit of the H–G function we obtained an absolute magnitude of H = 19.51 ± 0.02 and a slope parameter of G = 0.34 ± 0.02. The Shevchenko function yielded an absolute magnitude of H = 19.03 ± 0.07 and a phase coefficient b = 0.0225 ± 0.0006. The phase coefficient was used to calculate the geometric albedo (Ag) using the relationship found by Belskaya & Schevchenko, obtaining a value of Ag = 40% ± 8% in the V-band. With the geometric albedo and the absolute magnitudes derived from the H–G and the Shevchenko functions we calculated the diameter (D) of 2004 BL86, obtaining D = 263 ± 26 and D = 328 ± 35 m, respectively. 2004 BL86 spectral band parameters and pyroxene chemistry are consistent with non-cumulate eucrite meteorites. A majority of these meteorites are derived from Vesta and are analogous with surface lava flows on a differentiated parent body. A non-diagnostic spectral curve match using the Modeling for Asteroids tool yielded a best-match with non-cumulate eucrite Bereba. Three other near-Earth asteroids (1993 VW, 1998 KK17, and 2000 XH44) that were observed by Burbine et al. also have spectral properties similar to 2004 BL86. The presence of eucrites with anomalous oxygen isotope ratios compared to the howardites, eucrites, and diogenites meteorites from Vesta suggests the possible presence of multiple differentiated bodies in the inner main belt or the contamination of Vestas surface with exogenic material. The spectral properties of both anomalous and Vestan eucrites are degenerate, making it difficult to identify the parent bodies of anomalous eucrites in the main belt and the NEO population using remote sensing. This makes it difficult to link 2004 BL86 directly to Vesta, although the Vesta family is the largest contributor of V-types to near-Earth space.


bioRxiv | 2018

Life Inside A Dinosaur Bone: A Thriving Microbiome

Evan T. Saitta; Renxing Liang; Chui Y Lau; Caleb M. Brown; Thomas G. Kaye; Ben J. Novak; Paul Donohoe; Marc R. Dickinson; Jakob Vinther; Ian D. Bull; Richard A. Brooker; P. Martin; Geoffrey D. Abbott; Timothy Dj Knowles; Kirsty Penkman; T. C. Onstott

Fossils were long thought to lack original organic material, but the discovery of organic molecules in fossils and sub-fossils, thousands to millions of years old, has demonstrated the potential of fossil organics to provide radical new insights into the fossil record. How long different organics can persist remains unclear, however. Non-avian dinosaur bone has been hypothesised to preserve endogenous organics including collagen, osteocytes, and blood vessels, but proteins and labile lipids are unstable during diagenesis or over long periods of time. Furthermore, bone is porous and an open system, allowing microbial and organic flux. Some of these organics within fossil bone have therefore been identified as either contamination or microbial biofilm, rather than original organics. Here, we use biological and chemical analyses of Late Cretaceous dinosaur bones and sediment matrix to show that dinosaur bone hosts a diverse microbiome. Fossils and matrix were freshly-excavated, aseptically-acquired, and then analysed using microscopy, spectroscopy, chromatography, spectrometry, DNA extraction, and 16S rRNA amplicon sequencing. The fossil organics differ from modern bone collagen chemically and structurally. A key finding is that 16S rRNA amplicon sequencing reveals that the subterranean fossil bones host a unique, living microbiome distinct from that of the surrounding sediment. Even in the subsurface, dinosaur bone is biologically active and behaves as an open system, attracting microbes that might alter original organics or complicate the identification of original organics. These results suggest caution regarding claims of dinosaur bone ‘soft tissue’ preservation and illustrate a potential role for microbial communities in post-burial taphonomy.


Palaeontology | 2016

Structure and homology of Psittacosaurus tail bristles

Gerald Mayr; Michael Pittman; Evan T. Saitta; Thomas G. Kaye; Jakob Vinther

Collaboration


Dive into the Thomas G. Kaye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald Mayr

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xing Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Martin

University of Bristol

View shared research outputs
Researchain Logo
Decentralizing Knowledge