Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Girke is active.

Publication


Featured researches published by Thomas Girke.


Nature Methods | 2015

Orchestrating high-throughput genomic analysis with Bioconductor

Wolfgang Huber; Vincent J. Carey; Robert Gentleman; Simon Anders; Marc Carlson; Benilton Carvalho; Héctor Corrada Bravo; Sean Davis; Laurent Gatto; Thomas Girke; Raphael Gottardo; Florian Hahne; Kasper D. Hansen; Rafael A. Irizarry; Michael S. Lawrence; Michael I. Love; James W. MacDonald; Valerie Obenchain; Andrzej K. Oleś; Hervé Pagès; Alejandro Reyes; Paul Shannon; Gordon K. Smyth; Dan Tenenbaum; Levi Waldron; Martin Morgan

Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934 interoperable packages contributed by a large, diverse community of scientists. Packages cover a range of bioinformatic and statistical applications. They undergo formal initial review and continuous automated testing. We present an overview for prospective users and contributors.


The Plant Cell | 2004

The Vegetative Vacuole Proteome of Arabidopsis thaliana Reveals Predicted and Unexpected Proteins

Clay J. Carter; Songqin Pan; Jan Zouhar; Emily L. Avila; Thomas Girke; Natasha V. Raikhel

Vacuoles play central roles in plant growth, development, and stress responses. To better understand vacuole function and biogenesis we have characterized the vegetative vacuolar proteome from Arabidopsis thaliana. Vacuoles were isolated from protoplasts derived from rosette leaf tissue. Total purified vacuolar proteins were then subjected either to multidimensional liquid chromatography/tandem mass spectrometry or to one-dimensional SDS-PAGE coupled with nano-liquid chromatography/tandem mass spectrometry (nano-LC MS/MS). To ensure maximum coverage of the proteome, a tonoplast-enriched fraction was also analyzed separately by one-dimensional SDS-PAGE followed by nano-LC MS/MS. Cumulatively, 402 proteins were identified. The sensitivity of our analyses is indicated by the high coverage of membrane proteins. Eleven of the twelve known vacuolar-ATPase subunits were identified. Here, we present evidence of four tonoplast-localized soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs), representing each of the four groups of SNARE proteins necessary for membrane fusion. In addition, potential cargo of the N- and C-terminal propeptide sorting pathways, association of the vacuole with the cytoskeleton, and the vacuolar localization of 89 proteins of unknown function are identified. A detailed analysis of these proteins and their roles in vacuole function and biogenesis is presented.


The Plant Cell | 2002

Contrapuntal Networks of Gene Expression during Arabidopsis Seed Filling

Sari A. Ruuska; Thomas Girke; Christoph Benning; John B. Ohlrogge

We have used cDNA microarrays to examine changes in gene expression during Arabidopsis seed development and to compare wild-type and mutant wrinkled1 (wri1) seeds that have an 80% reduction in oil. Between 5 and 13 days after flowering, a period preceding and including the major accumulation of storage oils and proteins, ∼35% of the genes represented on the array changed at least twofold, but a larger fraction (65%) showed little or no change in expression. Genes whose expression changed most tended to be expressed more in seeds than in other tissues. Genes related to the biosynthesis of storage components showed several distinct temporal expression patterns. For example, a number of genes encoding core fatty acid synthesis enzymes displayed a bell-shaped pattern of expression between 5 and 13 days after flowering. By contrast, the expression of storage proteins, oleosins, and other known abscisic acid–regulated genes increased later and remained high. Genes for photosynthetic proteins followed a pattern very similar to that of fatty acid synthesis proteins, implicating a role in CO2 refixation and the supply of cofactors for oil synthesis. Expression profiles of key carbon transporters and glycolytic enzymes reflected shifts in flux from cytosolic to plastid metabolism. Despite major changes in metabolism between wri1 and wild-type seeds, <1% of genes differed by more than twofold, and most of these were involved in central lipid and carbohydrate metabolism. Thus, these data define in part the downstream responses to disruption of the WRI1 gene.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis

Angelika Mustroph; M. Eugenia Zanetti; Charles J. H. Jang; Hans E. Holtan; Peter P. Repetti; David W. Galbraith; Thomas Girke; Julia Bailey-Serres

Multicellular organs are composed of distinct cell types with unique assemblages of translated mRNAs. Here, ribosome-associated mRNAs were immunopurified from specific cell populations of intact seedlings using Arabidopsis thaliana lines expressing a FLAG-epitope tagged ribosomal protein L18 (FLAG-RPL18) via developmentally regulated promoters. The profiling of mRNAs in ribosome complexes, referred to as the translatome, identified differentially expressed mRNAs in 21 cell populations defined by cell-specific expression of FLAG-RPL18. Phloem companion cells of the root and shoot had the most distinctive translatomes. When seedlings were exposed to a brief period of hypoxia, a pronounced reprioritization of mRNA enrichment in the cell-specific translatomes occurred, including a ubiquitous rise in 49 mRNAs encoding transcription factors, signaling proteins, anaerobic metabolism enzymes, and uncharacterized proteins. Translatome profiling also exposed an intricate molecular signature of transcription factor (TF) family member mRNAs that was markedly reconfigured by hypoxia at global and cell-specific levels. In addition to the demonstration of the complexity and plasticity of cell-specific populations of ribosome-associated mRNAs, this study provides an in silico dataset for recognition of differentially expressed genes at the cell-, region-, and organ-specific levels.


Genes & Development | 2011

WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex

Ram Kishor Yadav; Mariano Perales; Jérémy Gruel; Thomas Girke; Henrik Jönsson; G. Venugopala Reddy

WUSCHEL (WUS) is a homeodomain transcription factor produced in cells of the niche/organizing center (OC) of shoot apical meristems. WUS specifies stem cell fate and also restricts its own levels by activating a negative regulator, CLAVATA3 (CLV3), in adjacent cells of the central zone (CZ). Here we show that the WUS protein, after being synthesized in cells of the OC, migrates into the CZ, where it activates CLV3 transcription by binding to its promoter elements. Using a computational model, we show that maintenance of the WUS gradient is essential to regulate stem cell number. Migration of a stem cell-inducing transcription factor into adjacent cells to activate a negative regulator, thereby restricting its own accumulation, is a theme that is unique to plant stem cell niches.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Gene expression map of the Arabidopsis shoot apical meristem stem cell niche

Ram Kishor Yadav; Thomas Girke; Sumana Pasala; Mingtang Xie; G. Venugopala Reddy

Despite the central importance of stem cells in plant growth and development, the molecular signatures associated with them have not been revealed. Shoot apical meristems (SAMs) harbor a small set of stem cells located at the tip of each plant and they are surrounded by several million differentiating cells. This imposes a major limitation in isolating pure populations of stem cells for genomic analyses. We have developed a system to isolate pure populations of distinct cell types of the SAMs, including stem cells. We have used this system to profile gene expression from 4 different cell samples of SAMs. The cell sample-specific gene expression profiling has resulted in a high-resolution gene expression map to reveal gene expression networks specific to individual spatial domains of SAMs. We demonstrate that the cell sample-specific expression profiling is sensitive in identifying rare transcripts expressed in a few specific subsets of cells of SAMs. Our extensive RNA in situ analysis reveals that the expression map can be used as a predictive tool in analyzing the spatial expression patterns of genes and it has led to the identification of unique gene expression patterns within the SAMs. Furthermore, our work reveals an enrichment of DNA repair and chromatin modification pathways in stem cells suggesting that maintenance of genome stability and flexible chromatin may be crucial for stem cell function. The gene expression map should guide future reverse genetics experiments, high-resolution analyses of cell–cell communication networks and epigenetic modifications.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis

Piyada Juntawong; Thomas Girke; Jérémie Bazin; Julia Bailey-Serres

Significance Plant survival in a highly varied environment requires flexibility in gene regulation. To capture dynamics of mRNA translation at the genome scale, we precisely mapped individual ribosomes to mRNAs of whole seedlings under control and low-oxygen conditions. The results demonstrate nearly 100-fold variation in the efficiency of translation of individual mRNAs under both conditions and provide unique insights into posttranscriptional and translational regulation modulated by low-energy stress in Arabidopsis thaliana. Translational regulation contributes to plasticity in metabolism and growth that enables plants to survive in a dynamic environment. Here, we used the precise mapping of ribosome footprints (RFs) on mRNAs to investigate translational regulation under control and sublethal hypoxia stress conditions in seedlings of Arabidopsis thaliana. Ribosomes were obtained by differential centrifugation or immunopurification and were digested with RNase I to generate footprint fragments that were deep-sequenced. Comparison of RF number and position on genic regions with fragmented total and polysomal mRNA illuminated numerous aspects of posttranscriptional and translational control under both growth conditions. When seedlings were oxygen-deprived, the frequency of ribosomes at the start codon was reduced, consistent with a global decline in initiation of translation. Hypoxia–up-regulated gene transcripts increased in polysome complexes during the stress, but the number of ribosomes per transcript relative to normoxic conditions was not enhanced. On the other hand, many mRNAs with limited change in steady-state abundance had significantly fewer ribosomes but with an overall similar distribution under hypoxia, consistent with restriction of initiation rather than elongation of translation. RF profiling also exposed the inhibitory effect of upstream ORFs on the translation of downstream protein-coding regions under normoxia, which was further modulated by hypoxia. The data document translation of alternatively spliced mRNAs and expose ribosome association with some noncoding RNAs. Altogether, we present an experimental approach that illuminates prevalent and nuanced regulation of protein synthesis under optimal and energy-limiting conditions.


Plant Physiology | 2008

Annotating Genes of Known and Unknown Function by Large-Scale Coexpression Analysis

Kevin Horan; Charles J. H. Jang; Julia Bailey-Serres; Ron Mittler; Christian R. Shelton; Jeffrey F. Harper; Jian-Kang Zhu; John Jc Cushman; Martin Gollery; Thomas Girke

About 40% of the proteins encoded in eukaryotic genomes are proteins of unknown function (PUFs). Their functional characterization remains one of the main challenges in modern biology. In this study we identified the PUF encoding genes from Arabidopsis (Arabidopsis thaliana) using a combination of sequence similarity, domain-based, and empirical approaches. Large-scale gene expression analyses of 1,310 publicly available Affymetrix chips were performed to associate the identified PUF genes with regulatory networks and biological processes of known function. To generate quality results, the study was restricted to expression sets with replicated samples. First, genome-wide clustering and gene function enrichment analysis of clusters allowed us to associate 1,541 PUF genes with tightly coexpressed genes for proteins of known function (PKFs). Over 70% of them could be assigned to more specific biological process annotations than the ones available in the current Gene Ontology release. The most highly overrepresented functional categories in the obtained clusters were ribosome assembly, photosynthesis, and cell wall pathways. Interestingly, the majority of the PUF genes appeared to be controlled by the same regulatory networks as most PKF genes, because clusters enriched in PUF genes were extremely rare. Second, large-scale analysis of differentially expressed genes was applied to identify a comprehensive set of abiotic stress-response genes. This analysis resulted in the identification of 269 PKF and 104 PUF genes that responded to a wide variety of abiotic stresses, whereas 608 PKF and 206 PUF genes responded predominantly to specific stress treatments. The provided coexpression and differentially expressed gene data represent an important resource for guiding future functional characterization experiments of PUF and PKF genes. Finally, the public Plant Gene Expression Database (http://bioweb.ucr.edu/PED) was developed as part of this project to provide efficient access and mining tools for the vast gene expression data of this study.


Nucleic Acids Research | 2011

ChemMine tools: an online service for analyzing and clustering small molecules

Tyler W. H. Backman; Yiqun Cao; Thomas Girke

ChemMine Tools is an online service for small molecule data analysis. It provides a web interface to a set of cheminformatics and data mining tools that are useful for various analysis routines performed in chemical genomics and drug discovery. The service also offers programmable access options via the R library ChemmineR. The primary functionalities of ChemMine Tools fall into five major application areas: data visualization, structure comparisons, similarity searching, compound clustering and prediction of chemical properties. First, users can upload compound data sets to the online Compound Workbench. Numerous utilities are provided for compound viewing, structure drawing and format interconversion. Second, pairwise structural similarities among compounds can be quantified. Third, interfaces to ultra-fast structure similarity search algorithms are available to efficiently mine the chemical space in the public domain. These include fingerprint and embedding/indexing algorithms. Fourth, the service includes a Clustering Toolbox that integrates cheminformatic algorithms with data mining utilities to enable systematic structure and activity based analyses of custom compound sets. Fifth, physicochemical property descriptors of custom compound sets can be calculated. These descriptors are important for assessing the bioactivity profile of compounds in silico and quantitative structure—activity relationship (QSAR) analyses. ChemMine Tools is available at: http://chemmine.ucr.edu.


Molecular Plant-microbe Interactions | 2008

Tomato Susceptibility to Root-Knot Nematodes Requires an Intact Jasmonic Acid Signaling Pathway

Kishor K. Bhattarai; Qi-Guang Xie; Sophie Mantelin; Usha Bishnoi; Thomas Girke; Duroy A. Navarre; Isgouhi Kaloshian

Responses of resistant (Mi-1/Mi-1) and susceptible (mi-1/ mi-1) tomato (Solanum lycopersicum) to root-knot nematodes (RKNs; Meloidogyne spp.) infection were monitored using cDNA microarrays, and the roles of salicylic acid (SA) and jasmonic acid (JA) defense signaling were evaluated in these interactions. Array analysis was used to compare transcript profiles in incompatible and compatible interactions of tomato roots 24 h after RKN infestation. The jai1 and def1 tomato mutant, altered in JA signaling, and tomato transgenic line NahG, altered in SA signaling, in the presence or absence of the RKN resistance gene Mi-1, were evaluated. The array analysis identified 1,497 and 750 genes differentially regulated in the incompatible and compatible interactions, respectively. Of the differentially regulated genes, 37% were specific to the incompatible interactions. NahG affected neither Mi-1 resistance nor basal defenses to RKNs. However, jai1 reduced tomato susceptibility to RKNs while not affecting Mi-1 resistance. In contrast, the def1 mutant did not affect RKN susceptibility. These results indicate that JA-dependent signaling does not play a role in Mi-1-mediated defense; however, an intact JA signaling pathway is required for tomato susceptibility to RKNs. In addition, low levels of SA might be sufficient for basal and Mi-1 resistance to RKNs.

Collaboration


Dive into the Thomas Girke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiqun Cao

University of California

View shared research outputs
Top Co-Authors

Avatar

Ergude Bao

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge