Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas H. Barker is active.

Publication


Featured researches published by Thomas H. Barker.


American Journal of Respiratory and Critical Care Medicine | 2012

Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation

Adam J. Booth; Ryan Hadley; Ashley M. Cornett; Alyssa Dreffs; Stephanie A. Matthes; Jessica L. Tsui; Kevin B. Weiss; Jeffrey C. Horowitz; Vincent F. Fiore; Thomas H. Barker; Bethany B. Moore; Fernando J. Martinez; Laura E. Niklason; Eric S. White

RATIONALE Extracellular matrix (ECM) is a dynamic tissue that contributes to organ integrity and function, and its regulation of cell phenotype is a major aspect of cell biology. However, standard in vitro culture approaches are of unclear physiologic relevance because they do not mimic the compositional, architectural, or distensible nature of a living organ. In the lung, fibroblasts exist in ECM-rich interstitial spaces and are key effectors of lung fibrogenesis. OBJECTIVES To better address how ECM influences fibroblast phenotype in a disease-specific manner, we developed a culture system using acellular human normal and fibrotic lungs. METHODS Decellularization was achieved using treatment with detergents, salts, and DNase. The resultant matrices can be sectioned as uniform slices within which cells were cultured. MEASUREMENTS AND MAIN RESULTS We report that the decellularization process effectively removes cellular and nuclear material while retaining native dimensionality and stiffness of lung tissue. We demonstrate that lung fibroblasts reseeded into acellular lung matrices can be subsequently assayed using conventional protocols; in this manner we show that fibrotic matrices clearly promote transforming growth factor-β-independent myofibroblast differentiation compared with normal matrices. Furthermore, comprehensive analysis of acellular matrix ECM details significant compositional differences between normal and fibrotic lungs, paving the way for further study of novel hypotheses. CONCLUSIONS This methodology is expected to allow investigation of important ECM-based hypotheses in human tissues and permits future scientific exploration in an organ- and disease-specific manner.


Biomaterials | 2009

Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability

Mikaël M. Martino; Mayumi Mochizuki; Dominique A. Rothenfluh; Sandra A. Rempel; Jeffrey A. Hubbell; Thomas H. Barker

The extracellular matrix (ECM) exerts powerful control over many cellular phenomena, including stem cell differentiation. As such, design and modulation of ECM analogs to ligate specific integrin is a promising approach to control cellular processes in vitro and in vivo for regenerative medicine strategies. Although fibronectin (FN), a crucial ECM protein in tissue development and repair, and its RGD peptide are widely used for cell adhesion, the promiscuity with which they engage integrins leads to difficulty in control of receptor-specific interactions. Recent simulations of force-mediated unfolding of FN domains and sequences analysis of human versus mouse FN suggest that the structural stability of the FNs central cell-binding domains (FN III9-10) affects its integrin specificity. Through production of FN III9-10 variants with variable stabilities, we obtained ligands that present different specificities for the integrin alpha(5)beta(1) and that can be covalently linked into fibrin matrices. Here, we demonstrate the capacity of alpha(5)beta(1) integrin-specific engagement to influence human mesenchymal stem cell (MSC) behavior in 2D and 3D environments. Our data indicate that alpha(5)beta(1) has an important role in the control of MSC osteogenic differentiation. FN fragments with increased specificity for alpha(5)beta(1) versus alpha(v)beta(3) results in significantly enhanced osteogenic differentiation of MSCs in 2D and in a clinically relevant 3D fibrin matrix system, although attachment/spreading and proliferation were comparable with that on full-length FN. This work shows how integrin-dependant cellular interactions with the ECM can be engineered to control stem cell fate, within a system appropriate for both 3D cell culture and tissue engineering.


Advanced Materials | 2012

Maleimide Cross‐Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Cross‐Linking for Cell Encapsulation and In Situ Delivery

Edward A. Phelps; Nduka O. Enemchukwu; Vincent F. Fiore; Jay C. Sy; Niren Murthy; Todd Sulchek; Thomas H. Barker; Andrés J. García

Engineered polyethylene glycol-maleimide matrices for regenerative medicine exhibit improved reaction efficiency and wider range of Young’s moduli by utilizing maleimide cross-linking chemistry. This hydrogel chemistry is advantageous for cell delivery due to the mild reaction that occurs rapidly enough for in situ delivery, while easily lending itself to “plug-and-play” design variations such as incorporation of enzyme-cleavable cross-links and cell-adhesion peptides.


American Journal of Respiratory Cell and Molecular Biology | 2012

Matrix Stiffness–Induced Myofibroblast Differentiation Is Mediated by Intrinsic Mechanotransduction

Xiangwei Huang; Naiheng Yang; Vincent F. Fiore; Thomas H. Barker; Yi Sun; Stephan W. Morris; Qiang Ding; Victor J. Thannickal; Yong Zhou

The mechanical properties of the extracellular matrix have recently been shown to promote myofibroblast differentiation and lung fibrosis. Mechanisms by which matrix stiffness regulates myofibroblast differentiation are not fully understood. The goal of this study was to determine the intrinsic mechanisms of mechanotransduction in the regulation of matrix stiffness-induced myofibroblast differentiation. A well established polyacrylamide gel system with tunable substrate stiffness was used in this study. Megakaryoblastic leukemia factor-1 (MKL1) nuclear translocation was imaged by confocal immunofluorescent microscopy. The binding of MKL1 to the α-smooth muscle actin (α-SMA) gene promoter was quantified by quantitative chromatin immunoprecipitation assay. Normal human lung fibroblasts responded to matrix stiffening with changes in actin dynamics that favor filamentous actin polymerization. Actin polymerization resulted in nuclear translocation of MKL1, a serum response factor coactivator that plays a central role in regulating the expression of fibrotic genes, including α-SMA, a marker for myofibroblast differentiation. Mouse lung fibroblasts deficient in Mkl1 did not respond to matrix stiffening with increased α-SMA expression, whereas ectopic expression of human MKL1 cDNA restored the ability of Mkl1 null lung fibroblasts to express α-SMA. Furthermore, matrix stiffening promoted production and activation of the small GTPase RhoA, increased Rho kinase (ROCK) activity, and enhanced fibroblast contractility. Inhibition of RhoA/ROCK abrogated stiff matrix-induced actin cytoskeletal reorganization, MKL1 nuclear translocation, and myofibroblast differentiation. This study indicates that actin cytoskeletal remodeling-mediated activation of MKL1 transduces mechanical stimuli from the extracellular matrix to a fibrogenic program that promotes myofibroblast differentiation, suggesting an intrinsic mechanotransduction mechanism.


Biomaterials | 2011

Role of fibronectin in topographical guidance of neurite extension on electrospun fibers.

Vivek Mukhatyar; Manuel Salmerón-Sánchez; Soumon Rudra; Shoumit Mukhopadaya; Thomas H. Barker; Andrés J. García; Ravi V. Bellamkonda

Bridging of long peripheral nerve gaps remains a significant clinical challenge. Electrospun nanofibers have been used to direct and enhance neurite extension in vitro and in vivo. While it is well established that oriented fibers influence neurite outgrowth and Schwann cell migration, the mechanisms by which they influence these cells are still unclear. In this study, thin films consisting of aligned poly-acrylonitrile methylacrylate (PAN-MA) fibers or solvent casted smooth, PAN-MA films were fabricated to investigate the potential role of differential protein adsorption on topography-dependent neural cell responses. Aligned nanofiber films promoted enhanced adsorption of fibronectin compared to smooth films. Studies employing function-blocking antibodies against cell adhesion motifs suggest that fibronectin plays an important role in modulating Schwann cell migration and neurite outgrowth from dorsal root ganglion (DRG) cultures. Atomic Force Microscopy demonstrated that aligned PAN-MA fibers influenced fibronectin distribution, and promoted aligned fibronectin network formation compared to smooth PAN-MA films. In the presence of topographical cues, Schwann cell-generated fibronectin matrix was also organized in a topographically sensitive manner. Together these results suggest that fibronectin adsorption mediated the ability of topographical cues to influence Schwann cell migration and neurite outgrowth. These insights are significant to the development of rational approaches to scaffold designs to bridge long peripheral nerve gaps.


Acta Biomaterialia | 2014

Fibrin-based biomaterials: Modulation of macroscopic properties through rational design at the molecular level ☆

Ashley C. Brown; Thomas H. Barker

Fibrinogen is one of the primary components of the coagulation cascade and rapidly forms an insoluble matrix following tissue injury. In addition to its important role in hemostasis, fibrin acts as a scaffold for tissue repair and provides important cues for directing cell phenotype following injury. Because of these properties and the ease of polymerization of the material, fibrin has been widely utilized as a biomaterial for over a century. Modifying the macroscopic properties of fibrin, such as elasticity and porosity, has been somewhat elusive until recently, yet with a molecular-level rational design approach it can now be somewhat easily modified through alterations of molecular interactions key to the proteins polymerization process. This review outlines the biochemistry of fibrin and discusses methods for modification of molecular interactions and their application to fibrin based biomaterials.


The Journal of Pathology | 2013

Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions.

Ashley C. Brown; Vincent F. Fiore; Todd Sulchek; Thomas H. Barker

Increased tissue stiffness and epithelial‐to‐mesenchymal transitions (EMTs) are two seemingly discrete hallmarks of fibrotic diseases. Despite recent findings highlighting the influence of tissue mechanical properties on cell phenotype, it remains unclear what role increased tissue stiffness has in the regulation of previously reported fibronectin‐mediated EMTs associated with pulmonary fibrosis. Nano‐indentation testing of lung interstitial spaces showed that in vivo cell‐level Youngs moduli increase with the onset of fibrosis from ∼2 to ∼17 kPa. In vitro, we found that stiff, but not soft, fibronectin substrates induce EMT, a response dependent on cell contraction‐mediated integrin activation of TGFβ. Activation or suppression of cell contractility with exogenous factors was sufficient to overcome the effect of substrate stiffness. Pulse‐chase experiments indicate that the effect of cell contractility is dose‐ and time‐dependent. In response to low levels of TGFβ on soft surfaces, either added exogenously or produced through thrombin‐induced contraction, cells will initiate the EMT programme, but upon removal revert to an epithelial phenotype. These results identify matrix stiffness and/or cell contractility as critical targets for novel therapeutics for fibrotic diseases.


Nature Materials | 2014

Ultrasoft microgels displaying emergent platelet-like behaviours

Ashley C. Brown; Sarah E. Stabenfeldt; Byungwook Ahn; Riley T. Hannan; Kabir S. Dhada; Emily S. Herman; Victoria Stefanelli; Nina A. Guzzetta; Alexander Alexeev; Wilbur A. Lam; L. Andrew Lyon; Thomas H. Barker

Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation

Yongzhi Qiu; Ashley C. Brown; David R. Myers; Yumiko Sakurai; Robert G. Mannino; Reginald Tran; Byungwook Ahn; Elaissa T. Hardy; Matthew F. Kee; Sanjay Kumar; Gang Bao; Thomas H. Barker; Wilbur A. Lam

Significance Platelets are cell fragments in the blood that initiate clot formation at the site of bleeding. Although the biological aspects of this process have been well characterized, whether platelets can detect and physiologically respond to the mechanical aspects of its local environment is unclear. Here, we show that platelets sense the stiffness of the underlying clot substrate, and increasing substrate stiffness increases platelet adhesion and spreading. Importantly, adhesion on stiffer substrates leads to higher levels of platelet activation. Mechanistically, we determined that Rac1, actin, and myosin activity mediate this process. This newfound capability of how platelets adjust their degree of activation based on the mechanical properties of their environment provides new insight into how clots are formed. As platelets aggregate and activate at the site of vascular injury to stem bleeding, they are subjected to a myriad of biochemical and biophysical signals and cues. As clot formation ensues, platelets interact with polymerizing fibrin scaffolds, exposing platelets to a large range of mechanical microenvironments. Here, we show for the first time (to our knowledge) that platelets, which are anucleate cellular fragments, sense microenvironmental mechanical properties, such as substrate stiffness, and transduce those cues into differential biological signals. Specifically, as platelets mechanosense the stiffness of the underlying fibrin/fibrinogen substrate, increasing substrate stiffness leads to increased platelet adhesion and spreading. Importantly, adhesion on stiffer substrates also leads to higher levels of platelet activation, as measured by integrin αIIbβ3 activation, α-granule secretion, and procoagulant activity. Mechanistically, we determined that Rac1 and actomyosin activity mediate substrate stiffness-dependent platelet adhesion, spreading, and activation to different degrees. This capability of platelets to mechanosense microenvironmental cues in a growing thrombus or hemostatic plug and then mechanotransduce those cues into differential levels of platelet adhesion, spreading, and activation provides biophysical insight into the underlying mechanisms of platelet aggregation and platelet activation heterogeneity during thrombus formation.


Current Opinion in Biotechnology | 2013

Extracellular matrix signaling in morphogenesis and repair

Kelly C Clause; Thomas H. Barker

The extracellular matrix (ECM) is critically important for many cellular processes including growth, differentiation, survival, and morphogenesis. Cells remodel and reshape the ECM by degrading and reassembling it, playing an active role in sculpting their surrounding environment and directing their own phenotypes. Both mechanical and biochemical molecules influence ECM dynamics in multiple ways; by releasing small bioactive signaling molecules, releasing growth factors stored within the ECM, eliciting structural changes to matrix proteins which expose cryptic sites and by degrading matrix proteins directly. The dynamic reciprocal communication between cells and the ECM plays a fundamental roll in tissue development, homeostasis, and wound healing.

Collaboration


Dive into the Thomas H. Barker's collaboration.

Top Co-Authors

Avatar

Ashley C. Brown

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Vincent F. Fiore

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison M. Douglas

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrés J. García

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Todd Sulchek

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yumiko Sakurai

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anton V. Bryksin

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Byungwook Ahn

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge