Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas H. Bugge is active.

Publication


Featured researches published by Thomas H. Bugge.


Cancer Cell | 2003

Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes

Silvia Montaner; Akrit Sodhi; Alfredo A. Molinolo; Thomas H. Bugge; Earl T. Sawai; Yunsheng He; Yi Li; Patricio E. Ray; J. Silvio Gutkind

The Kaposis sarcoma herpesvirus (KSHV) has been identified as the etiologic agent of Kaposis sarcoma (KS), but initial events leading to KS development remain unclear. Characterization of the KSHV genome reveals the presence of numerous potential oncogenes. To address their contribution to the initiation of the endothelial cell-derived KS tumor, we developed a novel transgenic mouse that enabled endothelial cell-specific infection in vivo using virus expressing candidate KSHV oncogenes. Here we show that transduction of one gene, vGPCR, was sufficient to induce angioproliferative tumors that strikingly resembled human KS. Endothelial cells expressing vGPCR were further able to promote tumor formation by cells expressing KSHV latent genes, suggestive of a cooperative role among viral genes in the promotion of Kaposis sarcomagenesis.


Oncogene | 2002

Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis

Karin List; Christian Haudenschild; Roman Szabo; WanJun Chen; Sharon M. Wahl; William D. Swaim; Lars H Engelholm; Niels Behrendt; Thomas H. Bugge

Matriptase/MT-SP1 is a novel tumor-associated type II transmembrane serine protease that is highly expressed in the epidermis, thymic stroma, and other epithelia. A null mutation was introduced into the Matriptase/MT-SP1 gene of mice to determine the role of Matriptase/MT-SP1 in epidermal development and neoplasia. Matriptase/MT-SP1-deficient mice developed to term but uniformly died within 48 h of birth. All epidermal surfaces of newborn mice were grossly abnormal with a dry, red, shiny, and wrinkled appearance. Matriptase/MT-SP1-deficiency caused striking malformations of the stratum corneum, characterized by dysmorphic and pleomorphic corneocytes and the absence of vesicular bodies in transitional layer cells. This aberrant skin development seriously compromised both inward and outward epidermal barrier function, leading to the rapid and fatal dehydration of Matriptase/MT-SP1-deficient pups. Loss of Matriptase/MT-SP1 also seriously affected hair follicle development resulting in generalized follicular hypoplasia, absence of erupted vibrissae, lack of vibrissal hair canal formation, ingrown vibrissae, and wholesale abortion of vibrissal follicles. Furthermore, Matriptase/MT-SP1-deficiency resulted in dramatically increased thymocyte apoptosis, and depletion of thymocytes. This study demonstrates that Matriptase/MT-SP1 has pleiotropic functions in the development of the epidermis, hair follicles, and cellular immune system.


Cancer and Metastasis Reviews | 2003

Membrane anchored serine proteases: A rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer

Sarah Netzel-Arnett; John D. Hooper; Roman Szabo; Edwin L. Madison; James P. Quigley; Thomas H. Bugge; Toni M. Antalis

Dysregulated proteolysis is a hallmark of cancer. Malignant cells require a range of proteolytic activities to enable growth, survival, and expansion. Serine proteases of the S1 or trypsin-like family have well recognized roles in the maintenance of normal homeostasis as well as in the pathology of diseases such as cancer. Recently a rapidly expanding subgroup of S1 proteases has been recognized that are directly anchored to plasma membranes. These membrane anchored serine proteases are anchored either via a carboxy-terminal transmembrane domain (Type I), a carboxy terminal hydrophobic region that functions as a signal for membrane attachment via a glycosyl-phosphatidylinositol linkage (GPI-anchored), or via an amino terminal proximal transmembrane domain (Type II or TTSP). The TTSPs also encode multiple domains in their stem regions that may function in regulatory interactions. The serine protease catalytic domains of these enzymes show high homology but also possess features indicating unique substrate specificities. It is likely that the membrane anchored serine proteases have evolved to perform complex functions in the regulation of cellular signaling events at the plasma membrane and within the extracellular matrix. Disruption or mutation of several of the genes encoding these proteases are associated with disease. Many of the membrane anchored serine proteases show restricted tissue distribution in normal cells, but their expression is widely dysregulated during tumor growth and progression. Diagnostic or therapeutic targeting of the membrane anchored serine proteases has potential as promising new approaches for the treatment of cancer and other diseases.


Journal of Biological Chemistry | 2009

Type II transmembrane serine proteases

Thomas H. Bugge; Toni M. Antalis; Qingyu Wu

Analysis of genome and expressed sequence tag data bases at the turn of the millennium unveiled a new protease family named the type II transmembrane serine proteases (TTSPs) in a Journal of Biological Chemistry minireview (Hooper, J. D., Clements, J. A., Quigley, J. P., and Antalis, T. M. (2001) J. Biol. Chem. 276, 857–860). Since then, the number of known TTSPs has more than doubled, and more importantly, our understanding of the physiological functions of individual TTSPs and their contribution to human disease has greatly increased. Progress has also been made in identifying molecular substrates and endogenous inhibitors. This minireview summarizes the current knowledge of the rapidly advancing TTSP field.


Journal of Cell Biology | 2003

Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1

Karin List; Roman Szabo; Philip W. Wertz; Julie Segre; Christian C. Haudenschild; Soo-Youl Kim; Thomas H. Bugge

Profilaggrin is a large epidermal polyprotein that is proteolytically processed during keratinocyte differentiation to release multiple filaggrin monomer units as well as a calcium-binding regulatory NH2-terminal filaggrin S-100 protein. We show that epidermal deficiency of the transmembrane serine protease Matriptase/MT-SP1 perturbs lipid matrix formation, cornified envelope morphogenesis, and stratum corneum desquamation. Surprisingly, proteomic analysis of Matriptase/MT-SP1–deficient epidermis revealed the selective loss of both proteolytically processed filaggrin monomer units and the NH2-terminal filaggrin S-100 regulatory protein. This was associated with a profound accumulation of profilaggrin and aberrant profilaggrin-processing products in the stratum corneum. The data identify keratinocyte Matriptase/MT-SP1 as an essential component of the profilaggrin-processing pathway and a key regulator of terminal epidermal differentiation.


Journal of Biological Chemistry | 2006

Evidence for a Matriptase-Prostasin Proteolytic Cascade Regulating Terminal Epidermal Differentiation

Sarah Netzel-Arnett; Brooke M. Currie; Roman Szabo; Chen Yong Lin; Li-Mei Chen; Karl X. Chai; Toni M. Antalis; Thomas H. Bugge; Karin List

Recent gene ablation studies in mice have shown that matriptase, a type II transmembrane serine protease, and prostasin, a glycosylphosphatidylinositol-anchored membrane serine protease, are both required for processing of the epidermis-specific polyprotein, profilaggrin, stratum corneum formation, and acquisition of epidermal barrier function. Here we present evidence that matriptase acts upstream of prostasin in a zymogen activation cascade that regulates terminal epidermal differentiation and is required for prostasin zymogen activation. Enzymatic gene trapping of matriptase combined with prostasin immunohistochemistry revealed that matriptase was co-localized with prostasin in transitional layer cells of the epidermis and that the developmental onset of expression of the two membrane proteases was coordinated and correlated with acquisition of epidermal barrier function. Purified soluble matriptase efficiently converted soluble prostasin zymogen to an active two-chain form that formed SDS-stable complexes with the serpin protease nexin-1. Whereas two forms of prostasin with molecular weights corresponding to the prostasin zymogen and active prostasin were present in wild type epidermis, prostasin was exclusively found in the zymogen form in matriptase-deficient epidermis. These data suggest that matriptase, an autoactivating protease, acts upstream from prostasin to initiate a zymogen cascade that is essential for epidermal differentiation.


Oncogene | 1998

Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice

Thomas H. Bugge; Leif R. Lund; Keith K. Kombrinck; Boye Schnack Nielsen; Kenn Holmbäck; Angela F. Drew; Matthew J. Flick; David P. Witte; Keld Danø; Jay L. Degen

To investigate the role of plasmin(ogen) in mammary tumor development and progression, plasminogen- deficient mice were crossed with transgenic mice expressing Polyoma middle T antigen under the control of the mouse mammary tumor virus long terminal repeat. Virgin females carrying the Polyoma middle T antigen uniformly developed multiple, bilateral mammary tumors, regardless of the presence or absence of circulating plasminogen. Both the age at which these tumors became palpable and subsequent tumor growth were indistinguishable between plasminogen-deficient mice and plasminogen-expressing littermates. However, plasminogen was found to greatly modify the metastatic potential in this model system; lung metastasis in plasminogen-deficient mice was significantly reduced as compared to littermate controls with respect to frequency of occurrence, total number of metastases, and total metastatic tumor burden. Plasminogen activators, as well as other key factors that govern the conversion of plasminogen to plasmin, were expressed within the mammary tumors, suggesting that the plasminogen/plasmin system may promote metastasis by contributing to tumor-associated extracellular proteolysis. The data provide direct evidence that plasmin(ogen) is a tumor progression factor in PymT-induced mammary cancer, and support the hypothesis that hemostatic factors play an important role in tumor biology.


Journal of Biological Chemistry | 2001

Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin.

Shihui Liu; Thomas H. Bugge; Stephen H. Leppla

Urokinase plasminogen activator receptor (uPAR) binds pro-urokinase plasminogen activator (pro-uPA) and thereby localizes it near plasminogen, causing the generation of active uPA and plasmin on the cell surface. uPAR and uPA are overexpressed in a variety of human tumors and tumor cell lines, and expression of uPAR and uPA is highly correlated to tumor invasion and metastasis. To exploit these characteristics in the design of tumor cell-selective cytotoxins, we constructed mutated anthrax toxin-protective antigen (PrAg) proteins in which the furin cleavage site is replaced by sequences cleaved specifically by uPA. These uPA-targeted PrAg proteins were activated selectively on the surface of uPAR-expressing tumor cells in the presence of pro-uPA and plasminogen. The activated PrAg proteins caused internalization of a recombinant cytotoxin, FP59, consisting of anthrax toxin lethal factor residues 1–254 fused to the ADP-ribosylation domain of Pseudomonas exotoxin A, thereby killing the uPAR-expressing tumor cells. The activation and cytotoxicity of these uPA-targeted PrAg proteins were strictly dependent on the integrity of the tumor cell surface-associated plasminogen activation system. We also constructed a mutated PrAg protein that selectively killed tissue plasminogen activator-expressing cells. These mutated PrAg proteins may be useful as new therapeutic agents for cancer treatment.


Journal of Biological Chemistry | 2007

MT1-MMP Controls Tumor-induced Angiogenesis through the Release of Semaphorin 4D

John R. Basile; Kenn Holmbeck; Thomas H. Bugge; J. Silvio Gutkind

The semaphorins are a family of proteins originally identified as regulators of axon growth that recently have been implicated in blood vessel development. The plexins are high affinity receptors for the semaphorins and are responsible for initiation of signaling upon ligation. Emerging evidence indicates that many human cancers overexpress Semaphorin 4D, which promotes neovascularization upon stimulating its receptor, Plexin-B1, on endothelial cells. However, to exert its pro-angiogenic functions, Semaphorin 4D must be processed and released from its membrane bound form to act in a paracrine manner on endothelial cells. Here we show that Semaphorin 4D is a novel target for the membrane-tethered collagenase membrane type 1-matrix metalloproteinase. We demonstrate that this metalloproteinase, which is not expressed in normal or immortal but non-tumorigenic epithelial cell lines, was present in several head and neck squamous cell carcinoma cell lines and was required for processing and release of Semaphorin 4D into its soluble form from these cells, thereby inducing endothelial cell chemotaxis in vitro and blood vessel growth in vivo. These results suggest that the proteolytic cleavage of Semaphorin 4D may provide a novel molecular mechanism by which membrane type 1-matrix metalloproteinase controls tumor-induced angiogenesis.


Journal of Cell Biology | 2003

uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

Lars H. Engelholm; Karin List; Sarah Netzel-Arnett; Edna Cukierman; David Mitola; Hannah Aaronson; Lars Kjøller; Jørgen K. Larsen; Kenneth M. Yamada; Dudley K. Strickland; Kenn Holmbeck; Keld Danø; Henning Birkedal-Hansen; Niels Behrendt; Thomas H. Bugge

The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor–associated protein (uPARAP)/Endo180, a novel mesenchymally expressed member of the macrophage mannose receptor family of endocytic receptors, is a key player in this process. Fibroblasts from mice with a targeted deletion in the uPARAP/Endo180 gene displayed a near to complete abrogation of collagen endocytosis. Furthermore, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions.

Collaboration


Dive into the Thomas H. Bugge's collaboration.

Top Co-Authors

Avatar

Roman Szabo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen H. Leppla

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shihui Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay L. Degen

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin List

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur E. Frankel

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge