Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas H. Cribb is active.

Publication


Featured researches published by Thomas H. Cribb.


International Journal for Parasitology | 2003

Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda).

Peter D. Olson; Thomas H. Cribb; Vasyl V. Tkach; Rodney A. Bray; D. T. J. Littlewood

Complete small subunit ribosomal RNA gene (ssrDNA) and partial (D1-D3) large subunit ribosomal RNA gene (lsrDNA) sequences were used to estimate the phylogeny of the Digenea via maximum parsimony and Bayesian inference. Here we contribute 80 new ssrDNA and 124 new lsrDNA sequences. Fully complementary data sets of the two genes were assembled from newly generated and previously published sequences and comprised 163 digenean taxa representing 77 nominal families and seven aspidogastrean outgroup taxa representing three families. Analyses were conducted on the genes independently as well as combined and separate analyses including only the higher plagiorchiidan taxa were performed using a reduced-taxon alignment including additional characters that could not be otherwise unambiguously aligned. The combined data analyses yielded the most strongly supported results and differences between the two methods of analysis were primarily in their degree of resolution. The Bayesian analysis including all taxa and characters, and incorporating a model of nucleotide substitution (general-time-reversible with among-site rate heterogeneity), was considered the best estimate of the phylogeny and was used to evaluate their classification and evolution. In broad terms, the Digenea forms a dichotomy that is split between a lineage leading to the Brachylaimoidea, Diplostomoidea and Schistosomatoidea (collectively the Diplostomida nomen novum (nom. nov.)) and the remainder of the Digenea (the Plagiorchiida), in which the Bivesiculata nom. nov. and Transversotremata nom. nov. form the two most basal lineages, followed by the Hemiurata. The remainder of the Plagiorchiida forms a large number of independent lineages leading to the crown clade Xiphidiata nom. nov. that comprises the Allocreadioidea, Gorgoderoidea, Microphalloidea and Plagiorchioidea, which are united by the presence of a penetrating stylet in their cercariae. Although a majority of families and to a lesser degree, superfamilies are supported as currently defined, the traditional divisions of the Echinostomida, Plagiorchiida and Strigeida were found to comprise non-natural assemblages. Therefore, the membership of established higher taxa are emended, new taxa erected and a revised, phylogenetically based classification proposed and discussed in light of ontogeny, morphology and taxonomic history.


International Journal for Parasitology | 1998

A DNA-based demonstration of a three-host life-cycle for the Bivesiculidae (Platyhelminthes : Digenea)

Thomas H. Cribb; G. R. Anderson; R. D. Adlard; Rodney A. Bray

Immature bivesiculid trematodes collected from the intestine of Thlalassoma lunare (Labridae) are shown to be morphologically consistent with adults of Bivesicula claviformis from Epinephelus fasciatus (Serranidae). In addition, the immature bivesiculids have the same sequence for the second internal transcribed spacer of the ribosomal DNA. Comparison with three other species of Bivesiculidae showed differences of between 23% and 30%. These results show that bivesiculids may have three-host life-cycles in addition to the two-host life-cycles that have been demonstrated previously. The three-host life-cycle enables bivesiculids to infect large carnivorous fishes.


Systematic Parasitology | 2010

Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes.

Thomas H. Cribb; Rodney A. Bray

Advice is offered on some effective methods for collecting and preserving trematodes from fishes for taxonomy and systematics. Emphasis is placed on obtaining high-quality specimens that have reliable data and that are amenable to study by both morphological and molecular approaches. We emphasise the importance of the freshness of the host specimen, the reliability of its provenance and the labelling of the specimens. For the collecting itself, we recommend a ‘gut-wash’ approach for gastro-intestinal species and specific searches for atypical taxa such as didymozoids, aporocotylids, Saturnius Manter, 1969 and transversotrematids. For metacercariae, we recommend a ‘blender’ approach to release parasites from host tissues. For fixation, we argue in favour of heat-killing in fluid at close to boiling temperature. We recommend against flattening as a routine procedure for collecting specimens for morphology. Preservation for morphological study is best in formalin or alcohol, and alcohol works well for molecular samples. The importance of reliable labelling and the deposition of specimens in museums is emphasised.


Trends in Parasitology | 2002

Trematode life cycles: short is sweet?

Robert Poulin; Thomas H. Cribb

Complex life cycles are a hallmark of parasitic trematodes. In several trematode taxa, however, the life cycle is truncated: fewer hosts are used than in a typical three-host cycle, with fewer transmission events. Eliminating one host from the life cycle can be achieved in at least three different ways. Some trematodes show even more extreme forms of life cycle abbreviations, using only a mollusc to complete their cycle, with or without sexual reproduction. The occurrence of these phenomena among trematode families are reviewed here and show that life cycle truncation has evolved independently many times in the phylogeny of trematodes. The hypotheses proposed to account for life-cycle truncation, in addition to the factors preventing the adoption of shorter cycles by all trematodes are also discussed. The study of shorter life cycles offers an opportunity to understand the forces shaping the evolution of life cycles in general.


PLOS Neglected Tropical Diseases | 2009

A New PCR-Based Approach Indicates the Range of Clonorchis sinensis Now Extends to Central Thailand

Rebecca J. Traub; Julie Macaranas; Mathirut Mungthin; Saovanee Leelayoova; Thomas H. Cribb; K. Darwin Murrell; R.C. Andrew Thompson

Differentiation of the fish-borne trematodes belonging to the Opisthorchiidae, Heterophyidae and Lecithodendriidae is important from a clinical and epidemiological perspective, yet it is impossible to do using conventional coprological techniques, as the eggs are morphologically similar. Epidemiological investigation therefore currently relies on morphological examination of adult worms following expulsion chemotherapy. A PCR test capable of amplifying a segment of the internal transcribed spacer region of ribosomal DNA for the opisthorchiid and heterophyid flukes eggs taken directly from faeces was developed and evaluated in a rural community in central Thailand. The lowest quantity of DNA that could be amplified from individual adults of Opisthorchis viverrini, Clonorchis sinensis and Haplorchis taichui was estimated at 0.6 pg, 0.8 pg and 3 pg, respectively. The PCR was capable of detecting mixed infection with the aforementioned species of flukes under experimental conditions. A total of 11.6% of individuals in rural communities in Sanamchaikaet district, central Thailand, were positive for ‘Opisthorchis-like’ eggs in their faeces using conventional parasitological detection techniques. In comparison to microscopy, the PCR yielded a sensitivity and specificity of 71.0% and 76.7%, respectively. Analysis of the microscopy-positive PCR products revealed 64% and 23% of individuals to be infected with O. viverrini and C. sinensis, respectively. The remaining 13% (three individuals) were identified as eggs of Didymozoidae, presumably being passed mechanically in the faeces following the ingestion of infected fishes. An immediate finding of this study is the identification and first report of a C. sinensis–endemic community in central Thailand. This extends the known range of this liver fluke in Southeast Asia. The PCR developed herein provides an important tool for the specific identification of liver and intestinal fluke species for future epidemiological surveys.


International Journal for Parasitology | 2001

The nature and evolution of the association among digeneans, molluscs and fishes

Thomas H. Cribb; R. A. Bray; D.T.J. Littlewood

Patterns of association of digenean families and their mollusc and vertebrate hosts are assessed by way of a new database containing information on over 1000 species of digeneans for life-cycles and over 5000 species from fishes. Analysis of the distribution of digenean families in molluscs suggests that the group was associated primitively with gastropods and that infection of polychaetes, bivalves and scaphopods are all the results of host-switching. For the vertebrates, infections of agnathans and chondrichthyans are apparently the result of host-switching from teleosts. For digenean families the ratio of orders of fishes infected to superfamilies of molluscs infected ranges from 0.5 (Mesometridae) to 16 (Bivesiculidae) and has a mean of 5.6. Individual patterns of host association of 13 digenean families and superfamilies are reviewed. Two, Bucephalidae and Sanguinicolidae, are exceptional in infecting a range of first intermediate hosts qualitatively as broad as their range of definitive hosts. No well-studied taxon shows narrower association with vertebrate than with mollusc clades. The range of definitive hosts of digeneans is characteristically defined by eco-physiological similarity rather than phylogenetic relationship. The range of associations of digenean families with mollusc taxa is generally much narrower. These data are considered in the light of ideas about the significance of different forms of host association. If Manters Second Rule (the longer the association with a host group, the more pronounced the specificity exhibited by the parasite group) is invoked, then the data may suggest that the Digenea first parasitised molluscs before adopting vertebrate hosts. This interpretation is consistent with most previous ideas about the evolution of the Digenea but contrary to current interpretations based on the monophyly of the Neodermata. The basis of Manters Second Rule is, however, considered too flimsy for this interpretation to be robust. Problems of the inference of the evolution of patterns of parasitism in the Neodermata are discussed and considered so intractable that the truth may be presently unknowable.


Acta Parasitologica | 2009

The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution

Rodney A. Bray; Andrea Waeschenbach; Thomas H. Cribb; Gareth D. Weedall; Patricia Dyal; D. T. J. Littlewood

The phylogenetic relationships of representative species of the superfamily Lepocreadioidea were assessed using partial lsrDNA and nad1 sequences. Forty-two members of the family Lepocreadiidae, six putative members of the Enenteridae, six gyliauchenid species and one Gorgocephalidae, were studied along with 22 species representing 8 families. The Lepocreadioidea is found to be monophyletic, except for the two species of the putative enenterid genus Cadenatella, which are found to be only distantly related to the lepocreadioids. The Lepocreadioidea is formed of five clades in a polytomy, the Gorgocephalidae, a clade containing the Enenteridae and Gyliauchenidae, a small clade of atypical lepocreadiines and the deep-sea lepidapedine lepocreadiids, a small clade consisting of a freshwater form and a group of shallow-water putative lepidapedines and the final clade includes the remaining lepocreadiids. Thus, the generally accepted concept of the Lepocreadiidae is polyphyletic. The Enenteridae (minus Cadenatella) and the Gyliauchenidae are jointly and individually monophyletic, and are sister groups. The nad1 gene on its own places a deep-sea lepocreadiine with the deep-sea lepidapedines, whereas lsrDNA, combined sequences and morphology place this deep-sea lepocreadiine within a group of typical lepocreadiids. It could not be demonstrated that a significant proportion of sites in the nad1 gene evolved under positive selection; this anomalous relationship therefore remains unexplained. Most deep-sea species are in a monophyletic group, a few of which also occur in shallow waters, retaining some characters of the deep-sea clade. Many lepocreadioid species infect herbivorous fish, and it may be that the recently discovered life-cycle involving a bivalve first intermediate host and metacercariae encysted on vegetation is a common life-cycle pattern. The host relationships show no indication of co-speciation, although the host-spectrums exhibited are not random, with related worms tending to utilize related hosts. There are, however, many exceptions. Morphology is found to be of limited value in indicating higher level relationships. For example, even with the benefit of hindsight the gyliauchenids show little morphological similarity to their sister group, the Enenteridae.


Journal of Natural History | 1989

Digeneans of the family Opecoelidae Ozaki, 1925 from the southern Great Barrier Reef, including a new genus and three new species

Rodney A. Bray; Thomas H. Cribb

The following Digenea are described, recorded or figured from Heron Island and Fairfax Island in the southern Great Barrier Reef, off Queensland, northeastern Australia. Opegaster ditrematis from Apogon sp., Allopodocotyle epinepheli from Epinephelus quoyanus, Podocotyloides stenometra from Chaetodon rainfordi and C. plebius, Cainocreadium epinepheli from E. quoyanus and E. merra, Pacificreadium serrani (syn: Hamacreadium ghardagense) from Plectropomus leopardus, Hamacreadium mutabile (with 10 new synonyms) from Lutjanus amabilis, Helicometra fasciata from E. fasciata and E. merra, Macvicaria macassarensis n. comb. from Lethrinus chrysostomus, M. heronensis sp. nov. from L. chrysostomus and Gymnocranius bitorquatus, Pseudoplagioporus interruptus from L. chrysostomus, Orthodena tropica from L. chrysostomus, Propycnadenoides philippinensis (syn: Labrifer gymnocrani) from G. bitorquatus, Neochoanostoma avidabira gen, et sp. nov. from G. bitorquatus, N. bariadiva sp. nov. from G. bitorquatus. Plagioporus japo...


Parasitology | 2000

Endoparasite species richness of New Caledonian butterfly fishes: host density and diet matter.

Serge Morand; Thomas H. Cribb; Michel Kulbicki; M.C. Rigby; Claude Chauvet; Vincent Dufour; Elisabeth Faliex; René Galzin; C.M. Lo; A. Lo-Yat; Sylvie Pichelin; Pierre Sasal

Ecological factors may influence the number of parasites encountered and, thus, parasite species richness. These factors include diet, gregarity, conspecific and total host density, habitat, body size, vagility, and migration. One means of examining the influence of these factors on parasite species richness is through a comparative analysis of the parasites of different, but related, host species. In contrast to most comparative studies of parasite species richness of fish, which have been conducted by using data from the literature, the present study uses data obtained by the investigators. Coral reef fishes vary widely in the above ecological factors and are frequently parasitized by a diverse array of parasites. We, therefore, chose to investigate how the above ecological factors influence parasite species richness in coral reef fishes. We investigated the endoparasite species richness of 21 species of butterfly fishes (Chaetodontidae) of New Caledonia. We mapped the diet characters on the existing butterfly fish phylogeny and found that omnivory appears to be ancestral. We also mapped the estimated endoparasite species richness, coded from low to high parasite species richness, on the existing butterfly fish phylogeny and found that low parasite species richness appears to be associated with the ancestral state of omnivory. Different dietary and social strategies appear to have evolved more than once, with the exception of obligate coralivory, which appears to have evolved only once. Finally, after controlling for phylogenetic relationships, we found that only the percentage of plankton in the diet and conspecific host density were positively correlated with endoparasite species richness.


Veterinary Pathology | 1998

Lesions Caused by Cardiovascular Flukes (Digenea: Spirorchidae) in Stranded Green Turtles (Chelonia mydas):

A. N. Gordon; W. R. Kelly; Thomas H. Cribb

Evidence of infection with spirorchid flukes (Digenea: Spirorchidae) was sought at necropsy of 96 stranded green turtles, Chelonia mydas, that were examined during the course of a survey of marine turtle mortality in southeastern Queensland, Australia. Three species of spirorchid (Hapalotrema mehrai, H. postorchis, and Neospirorchis schistosomatoides) were identified. Severe disease due to spirorchid fluke infection (spirorchidiasis) was implicated as the principal cause of mortality in 10 turtles (10%), and appeared to be one of multiple severe problems in an additional 29 turtles (30%). Although flukes were observed in only 45% of stranded C. mydas in this study, presumed spirorchid fluke infection was diagnosed in an additional 53% of turtles, based principally on characteristic necropsy lesions and to a lesser extent on the histopathological detection of spirorchid eggs. Characteristic necropsy lesions included miliary spirorchid egg granulomas, which were observed most readily on serosal surfaces, particularly of the small intestine. Cardiovascular lesions included mural endocarditis, arteritis, and thrombosis, frequently accompanied by aneurysm formation. Resolution of thrombi was observed to occur via a combination of granuloma formation about indigestible components (spirorchid fluke egg shells) and exteriorization through the vessel wall, which resulted in granulomatous nodules on the adventitial surface. Septic aortic thrombosis complicated by disseminated bacterial infection, observed in five turtles, was recorded for the first time. Egg granulomas were ubiquitous in turtle tissues throughout this study. Although they generally appeared to be mild or incidental lesions, they were occasionally associated with severe multifocal granulomatous pneumonia or meningitis.

Collaboration


Dive into the Thomas H. Cribb's collaboration.

Top Co-Authors

Avatar

Rodney A. Bray

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron R. Jex

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Nathan J. Bott

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge