Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas H. Dohlman is active.

Publication


Featured researches published by Thomas H. Dohlman.


Investigative Ophthalmology & Visual Science | 2013

The CCR6/CCL20 Axis Mediates Th17 Cell Migration to the Ocular Surface in Dry Eye Disease

Thomas H. Dohlman; Sunil Chauhan; Shilpa Kodati; Jing Hua; Yihe Chen; Masahiro Omoto; Zahra Sadrai; Reza Dana

PURPOSE Th17 cells are believed to be the primary effector cells in the pathogenesis of dry eye disease (DED). However, the mechanisms by which Th17 cells migrate from the lymphoid tissues to the ocular surface are unknown. The purpose of this study was to investigate the role of the C-C chemokine receptor 6/C-C chemokine ligand 20 (CCR6/CCL20) chemokine axis in mediating Th17 cell migration in DED. METHODS DED was induced by housing C57BL/6 mice in a low-humidity environment supplemented with scopolamine treatment. Th17 cell expression of CCR6 was evaluated using flow cytometry and ocular surface expression of CCL20 was measured using PCR and ELISA assays. CCL20 neutralizing antibody was administered subconjunctivally to DED mice and disease severity, including the frequency of conjunctival Th17 cells, was evaluated. RESULTS CCR6 is preferentially expressed by Th17 cells in both normal and DED mice and DED significantly upregulates ocular surface expression of CCL20. Disruption of CCR6/CCL20 binding with CCL20 neutralizing antibody decreases T-cell migration in vitro and reduces Th17 cell infiltration of the conjunctiva when administered in vivo, significantly improving clinical signs of DED. These changes were accompanied by a decrease in ocular surface inflammatory cytokine levels and corneal CD11b+ cell frequencies. Treatment also significantly reduced the generation of Th17 cells. CONCLUSIONS Local neutralization of CCL20 decreases Th17 cell infiltration of the ocular surface in DED, leading to improvement in clinical signs of disease. This suggests that CCR6/CCL20 interactions direct Th17 cell migration in DED and that disruption of this axis may be a novel therapeutic approach to this condition.


Transplantation | 2015

VEGF-trap aflibercept significantly improves long-term graft survival in high-risk corneal transplantation.

Thomas H. Dohlman; Masahiro Omoto; Jing Hua; William G. Stevenson; Sang-Mok Lee; Sunil Chauhan; Reza Dana

Background Graft failure because of immune rejection remains a significant problem in organ transplantation, and lymphatic and blood vessels are important components of the afferent and efferent arms of the host alloimmune response, respectively. We compare the effect of antihemangiogenic and antilymphangiogenic therapies on alloimmunity and graft survival in a murine model of high-risk corneal transplantation. Methods Orthotopic corneal transplantation was performed in hemevascularized and lymph-vascularized high-risk host beds, and graft recipients received subconjunctival vascular endothelial growth factor (VEGF)-trap, anti-VEGF-C, sVEGFR-3, or no treatment, beginning at the time of surgery. Fourteen days after transplantation, graft hemeangiogenesis and lymphangiogenesis were evaluated by immunohistochemistry. The frequencies of Th1 cells in regional lymphoid tissue and graft-infiltrating immune cells were evaluated by flow cytometry. Long-term allograft survival was compared using Kaplan-Meier curves. Results VEGF-trap significantly decreased graft hemangiogenesis as compared to the control group and was most effective in reducing the frequency of graft-infiltrating immune cells. Anti-VEGF-C and sVEGFR3 significantly decreased graft lymphangiogenesis and lymphoid Th1 cell frequencies as compared to control. VEGF-trap (72%), anti-VEGF-C (25%), and sVEGFR-3 (11%) all significantly improved in the 8-week graft survival compared to control (0%), although VEGF-trap was significantly more effective than both anti-VEGF-C (P < 0.05) and sVEGFR-3 (P < 0.05). Conclusion In a clinically relevant model of high-risk corneal transplantation in which blood and lymphatic vessels are present and treatment begins at the time of transplantation, VEGF-trap is significantly more effective in improving long-term graft survival as compared to anti-VEGF-C and sVEGFR-3, but all approaches improve survival when compared to untreated control.


Journal of Immunology | 2013

CCL-21 Conditioned Regulatory T Cells Induce Allotolerance through Enhanced Homing to Lymphoid Tissue

Sunil Chauhan; Daniel R. Saban; Thomas H. Dohlman; Reza Dana

Regulatory T cells (Tregs) are instrumental in the induction and maintenance of tolerance, including in transplantation. Tregs induce allotolerance by interacting with APCs and T cells, interactions that require their proper homing to the lymphoid tissues. Using a well-characterized model of corneal allotransplantation, we demonstrate in this study that Tregs in the draining lymph nodes (LN) of allograft acceptors, but not rejectors, colocalize with APCs in the paracortical areas and express high levels of CCR7. In addition, we show that Treg expression of CCR7 is important not only for Treg homing to the draining LN, but also for optimal Treg suppressive function. Finally, we show that Tregs augmented for CCR7 expression by their ex vivo stimulation with the CCR7 ligand CCL21 show enhanced homing to the draining LN of allograft recipients and promote transplant survival. Together, these findings suggest that CCR7 expression is critical for Treg function and migration and that conditioning of Treg for maximal CCR7 expression may be a viable strategy for promoting allograft survival.


Investigative Ophthalmology & Visual Science | 2014

CCR7 Is Critical for the Induction and Maintenance of Th17 Immunity in Dry Eye Disease

Shilpa Kodati; Sunil Chauhan; Yihe Chen; Thomas H. Dohlman; Parisa Karimian; Daniel R. Saban; Reza Dana

PURPOSE We characterized antigen-presenting cell (APC)-relevant chemokine receptor expression in dry eye disease (DED), and investigated the effect of topical CC chemokine receptor (CCR)-7 blockade specifically on Th17 cell immunity and dry eye disease severity. METHODS We induced DED in female C57BL/6 mice. Chemokine receptor expression by corneal APCs was characterized using immunohistochemistry. To determine the functional role of CCR7 in DED, mice were treated topically with either anti-CCR7, a control isotype antibody, or left untreated, and clinical disease severity, Th17 responses, and molecular markers of DED were quantified. RESULTS Frequencies of CD11b(+) cells and their chemokine expression were increased in the cornea of DED mice. Mice treated topically with anti-CCR7 antibody displayed a significant reduction in clinical disease severity and Th17 response compared to the isotype and untreated groups. Topical CCR7 blockade was effective in ameliorating DED in its acute and chronic stages. CONCLUSIONS Our findings suggest that CCR7-mediated trafficking of APCs drives the induction and maintenance of Th17 immunity in DED and that CCR7 blockade is effective in suppressing the immunopathogenic mechanisms in DED.


Journal of clinical & cellular immunology | 2014

Corneal Lymphatics: Role in Ocular Inflammation as Inducer and Responder of Adaptive Immunity

Sunil Chauhan; Thomas H. Dohlman; Reza Dana

The normal cornea is devoid of lymphatic and blood vessels, thus suppressing both the afferent (lymphatic) and efferent (vascular) arms of the immune response–contributing to its ‘immune privilege’. Inflammation, however, negates this unique ‘immune’ and ‘angiogenic’ privilege of the cornea. Abnormal blood vessel growth from pre-existing limbal vessels into the cornea has been studied for many years, but it is only recently that the significance of new lymphatic vessels (lymphangiogenesis) in ocular inflammatory diseases has been demonstrated. Whereas blood vessels in inflamed ocular surface provide a route of entry for immune effector cells to the cornea, lymphatics facilitate the exit of antigen-presenting cells and antigenic material from the cornea to regional lymph nodes, thus promoting induction of adaptive immune response. This review summarizes the current evidence for lymphangiogenesis in the cornea, and describes its molecular mediators; and discusses the interface between corneal lymphangiogenesis and adaptive immunity. Furthermore, the pathophysiologic implications of corneal lymphangiogenesis in the setting of allo- and autoimmune-mediated corneal inflammation are discussed.


Investigative Ophthalmology & Visual Science | 2014

Mesenchymal stem cells home to inflamed ocular surface and suppress allosensitization in corneal transplantation.

Masahiro Omoto; Kishore Reddy Katikireddy; Alexandra Rezazadeh; Thomas H. Dohlman; Sunil Chauhan

PURPOSE To investigate whether systemically injected syngeneic mesenchymal stem cells (MSCs) can home to the transplanted cornea, suppress induction of alloimmunity, and promote allograft survival. METHODS Mesenchymal stem cells were generated from bone marrow of wild-type BALB/c or GFP (green fluorescent protein)+ C57BL/6 mice, and 1×10(6) cells were intravenously injected to allografted recipients 3 hours after surgery. Mesenchymal stem cells homing to the cornea were examined at day 3 post transplantation by immunohistochemistry. MHC (major histocompatibility complex) II+CD11c+ cells were detected in the cornea and lymph nodes (LNs) 14 days post transplantation using flow cytometry. Cytokine expression of bone marrow-derived dendritic cells (BMDCs) was determined using real-time PCR. ELISPOT assay was used to assess indirect and direct host T cell allosensitization, and graft survival was evaluated by slit-lamp biomicroscopy weekly up to 8 weeks. RESULTS Intravenously injected GFP+ MSCs were found in abundance in the transplanted cornea, conjunctiva, and LNs, but not in the ungrafted (contralateral) tissue. The frequencies of mature MHC II+CD11c+ antigen-presenting cells (APCs) were substantially decreased in the corneas and draining LNs of MSC-injected allograft recipients compared to control recipients. Maturation and function of in vitro cultured BMDCs were decreased when cocultured with MSCs. Draining LNs of MSC-injected allograft recipients showed lower frequencies of IFNγ-secreting Th1 cells compared to the control group. Allograft survival rate was significantly higher in MSC-injected recipients compared to non-MSC-injected recipients. CONCLUSIONS Our data demonstrate that systemically administered MSCs specifically home to the inflamed ocular surface and promote allograft survival by inhibiting APC maturation and induction of alloreactive T cells.


Cornea | 2014

Extraorbital lacrimal gland excision: a reproducible model of severe aqueous tear-deficient dry eye disease.

William G. Stevenson; Yihe Chen; Sang-Mok Lee; Hyun Soo Lee; Jing Hua; Thomas H. Dohlman; Tina Shiang; Reza Dana

Purpose: The aim of this study was to establish and characterize extraorbital lacrimal gland excision (LGE) as a model of aqueous tear-deficient dry eye disease in mice. Methods: Female C57BL/6 mice at 6 to 8 weeks of age were randomized to extraorbital LGE, sham surgery, or scopolamine groups. Mice that underwent extraorbital LGE or sham surgery were housed in the standard vivarium. Scopolamine-treated mice were housed in a controlled environment chamber that allowed for the continuous regulation of airflow (15 L/min), relative humidity (30%), and temperature (21–23°C). Clinical disease severity was assessed over the course of 14 days using the phenol red thread test and corneal fluorescein staining. Real-time polymerase chain reaction was performed to assess corneal mRNA expression of interleukin 1&bgr;, tumor necrosis factor &agr;, and matrix metalloproteinase 9. Flow cytometry was used to assess T helper cell frequencies in the conjunctivae and draining lymph nodes. Results: Extraorbital LGE markedly reduced aqueous tear secretion as compared with the sham procedure and induced a more consistent decrease in aqueous tear secretion than was observed in mice that received scopolamine while housed in the controlled environment chamber. Extraorbital LGE significantly increased corneal fluorescein staining scores as compared with those of both the sham surgery and scopolamine-treated groups. Extraorbital LGE significantly increased the corneal expression of interleukin 1&bgr;, tumor necrosis factor &agr;, and matrix metalloproteinase 9. Further, extraorbital LGE increased T helper 17–cell frequencies in the conjunctivae and draining lymph nodes. Conclusions: Extraorbital LGE induces aqueous tear-deficient dry eye disease in mice as evidenced by decreased aqueous tear secretion, increased corneal epitheliopathy, and induced ocular surface inflammation and immunity.


Investigative Ophthalmology & Visual Science | 2012

PDE4 Inhibition Suppresses IL-17–Associated Immunity in Dry Eye Disease

Zahra Sadrai; William Stevenson; Andre Okanobo; Yihe Chen; Thomas H. Dohlman; Jing Hua; Francisco Amparo; Sunil Chauhan; Reza Dana

PURPOSE To determine the effect of phosphodiesterase type-4 (PDE4) inhibition on IL-17-associated immunity in experimental dry eye disease (DED). METHODS Murine DED was induced, after which a PDE4 inhibitor (cilomilast), dexamethasone, cyclosporine, or a relevant vehicle was administered topically. Real-time PCR, immunohistochemical staining, and flow cytometry were employed to evaluate the immuno-inflammatory parameters of DED with a focus on IL-17-associated immunity. Corneal fluorescein staining (CFS) was performed to evaluate clinical disease progression. RESULTS DED induction increased proinflammatory cytokine expression, pathogenic immune cell infiltration, and CFS scores. Cilomilast significantly decreased the expression of TNF-α in the cornea (P ≤ 0.05) and IL-1α, IL-1β, and TNF-α in the conjunctiva (P ≤ 0.05) as compared with vehicle control. Cilomilast treatment markedly decreased the presence of CD11b+ antigen-presenting cells in the central and peripheral cornea (P ≤ 0.05), and led to decreased conjunctival expression of cytokines IL-6, IL-23, and IL-17 (P ≤ 0.05). Moreover, cilomilast decreased the expression of IL-17 and IL-23 in the draining lymph nodes (P ≤ 0.05). Topical cilomilast was significantly more effective than vehicle at reducing CFS scores (P ≤ 0.05). The therapeutic efficacy of cilomilast was comparable or superior to that of dexamethasone and cyclosporine in all tested measures. CONCLUSIONS Topical cilomilast suppresses the generation of IL-17-associated immunity in experimental DED.


Transplantation | 2016

In Vivo Expansion of Regulatory T Cells by Low-Dose Interleukin-2 Treatment Increases Allograft Survival in Corneal Transplantation.

Maryam Tahvildari; Masahiro Omoto; Yihe Chen; Parisa Emami-Naeini; Takenori Inomata; Thomas H. Dohlman; Abigail E. Kaye; Sunil Chauhan; Reza Dana

Background Corneal allograft survival dramatically decreases in hosts with inflamed or vascularized recipient beds. We have previously shown that in rejected corneal allografts regulatory T cells (Treg) demonstrate diminished Foxp3 expression and immunoregulatory function. Treatment with low doses of IL-2 selectively expands Treg and has been proposed for the treatment of autoimmune diseases. In this study, we investigated the effect of low-dose IL-2 administration on Treg function and corneal allograft survival. Methods Allogeneic corneal transplantation was performed on inflamed host beds. Low-dose systemic IL-2 was administered starting 3 days before grafting until 6 weeks after transplantation. Frequencies of Treg and their immunosuppressive function and antigen specificity were assessed using flow cytometry, in vitro proliferation assays, and adoptive transfer experiments. Frequencies of effector T cells (Teff) and graft infiltrating immune cells were measured at 2 weeks posttransplantation. Long-term allograft survival was evaluated for up to 9 weeks using Kaplan-Meier survival analysis. Results Treatment with low-dose IL-2 significantly increased frequencies of CD4+CD25+Foxp3+ Treg and their immunosuppressive function. It also suppressed alloimmune response as shown by the decreased CD4+ IFN&ggr;+ T cell frequencies and graft infiltration of CD45+ and CD4+ cells. Clinical evaluation of the grafts showed significant improvement in long-term corneal allograft survival in the IL-2 treated group compared with controls. Conclusions Our study is the first to report that treatment with low-dose IL-2 increases survival of corneal allografts. We propose that IL-2-mediated Treg expansion can be an effective tool to prevent alloimmunity and to improve long-term allograft survival in transplantation.


Transplantation | 2016

E-selectin Mediates Immune Cell Trafficking in Corneal Transplantation.

Thomas H. Dohlman; Di Zazzo A; Masahiro Omoto; Jing Hua; Ding J; Pedram Hamrah; Sunil Chauhan; Reza Dana

Background Immune rejection continues to threaten all tissue transplants. Here we sought to determine whether platelet (P)- and endothelial (E)-selectin mediate T cell recruitment in corneal transplantation and whether their blockade can reduce T cell graft infiltration and improve long-term corneal allograft survival. Methods In a murine model of allogeneic corneal transplantation, we used PCR and immunohistochemistry to investigate expression of P- and E-selectin in rejected versus accepted allografts and lymph node flow cytometry to assess expression of selectin ligands by effector T cells. Using P- and E-selectin neutralizing antibodies, we evaluated the effect of blockade on CD4 T cell recruitment, as well as the effect of anti–E-selectin on long-term allograft survival. Results The P- (93.3-fold, P < 0.05) and E-selectin (17.1-fold, P < 0.005) are upregulated in rejected versus accepted allogeneic transplants. Type 1 T helper cells from hosts with accepted and rejected grafts express high levels of P-selectin glycoprotein ligand 1 and glycosylated CD43. In vivo blockade of P (0.47 ± 0.03, P < 0.05) and E selectin (0.49 ± 0.1, P < 0.05) reduced the number of recruited T cells compared with IgG control (0.98 ± 0.1). Anti–E-selectin reduced the number of mature antigen-presenting cells trafficking to lymphoid tissue compared with control (6.96 ± 0.9 vs 12.67 ± 0.5, P < 0.05). Anti–E-selectin treatment delayed graft rejection and increased survival compared with control, although this difference did not reach statistical significance. Conclusions In a model of corneal transplantation, P- and E-selectin mediate T cell recruitment to the graft, E-selectin mediates APC trafficking to lymphoid tissue, and blockade of E-selectin has a modest effect on improving long-term graft survival.

Collaboration


Dive into the Thomas H. Dohlman's collaboration.

Top Co-Authors

Avatar

Reza Dana

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Sunil Chauhan

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Masahiro Omoto

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yihe Chen

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William G. Stevenson

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge