Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Happe is active.

Publication


Featured researches published by Thomas Happe.


Nature | 2013

Biomimetic assembly and activation of [FeFe]-hydrogenases

Gustav Berggren; Agnieszka Adamska; Camilla Lambertz; Trevor R. Simmons; Julian Esselborn; Mohamed Atta; Serge Gambarelli; Jean-Marie Mouesca; Eduard Reijerse; Wolfgang Lubitz; Thomas Happe; Vincent Artero; Marc Fontecave

Hydrogenases are the most active molecular catalysts for hydrogen production and uptake, and could therefore facilitate the development of new types of fuel cell. In [FeFe]-hydrogenases, catalysis takes place at a unique di-iron centre (the [2Fe] subsite), which contains a bridging dithiolate ligand, three CO ligands and two CN– ligands. Through a complex multienzymatic biosynthetic process, this [2Fe] subsite is first assembled on a maturation enzyme, HydF, and then delivered to the apo-hydrogenase for activation. Synthetic chemistry has been used to prepare remarkably similar mimics of that subsite, but it has failed to reproduce the natural enzymatic activities thus far. Here we show that three synthetic mimics (containing different bridging dithiolate ligands) can be loaded onto bacterial Thermotoga maritima HydF and then transferred to apo-HydA1, one of the hydrogenases of Chlamydomonas reinhardtii algae. Full activation of HydA1 was achieved only when using the HydF hybrid protein containing the mimic with an azadithiolate bridge, confirming the presence of this ligand in the active site of native [FeFe]-hydrogenases. This is an example of controlled metalloenzyme activation using the combination of a specific protein scaffold and active-site synthetic analogues. This simple methodology provides both new mechanistic and structural insight into hydrogenase maturation and a unique tool for producing recombinant wild-type and variant [FeFe]-hydrogenases, with no requirement for the complete maturation machinery.


Proceedings of the National Academy of Sciences of the United States of America | 2009

How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

Sven T. Stripp; Gabrielle Goldet; Caterina Brandmayr; Oliver Sanganas; Kylie A. Vincent; Michael Haumann; Fraser A. Armstrong; Thomas Happe

Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site.


Planta | 2004

Cyanobacterial H2 production — a comparative analysis

Kathrin Schütz; Thomas Happe; Olga Troshina; Peter Lindblad; Elsa Leitão; Paulo J. Oliveira; Paula Tamagnini

Several unicellular and filamentous, nitrogen-fixing and non-nitrogen-fixing cyanobacterial strains have been investigated on the molecular and the physiological level in order to find the most efficient organisms for photobiological hydrogen production. These strains were screened for the presence or absence of hup and hox genes, and it was shown that they have different sets of genes involved in H2 evolution. The uptake hydrogenase was identified in all N2-fixing cyanobacteria, and some of these strains also contained the bidirectional hydrogenase, whereas the non-nitrogen fixing strains only possessed the bidirectional enzyme. In N2-fixing strains, hydrogen was mainly produced by the nitrogenase as a by-product during the reduction of atmospheric nitrogen to ammonia. Therefore, hydrogen production was investigated both under non-nitrogen-fixing conditions and under nitrogen limitation. It was shown that the hydrogen uptake activity is linked to the nitrogenase activity, whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependent or even related to diazotrophic growth conditions. With regard to large-scale hydrogen evolution by N2-fixing cyanobacteria, hydrogen uptake-deficient mutants have to be used because of their inability to re-oxidize the hydrogen produced by the nitrogenase. On the other hand, fermentative H2 production by the bidirectional hydrogenase should also be taken into account in further investigations of biological hydrogen production.


Planta | 2007

Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks

Anja Hemschemeier; Swanny Fouchard; Laurent Cournac; Gilles Peltier; Thomas Happe

The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H2 producers. Two of the still most disputed questions regarding H2 generation by C. reinhardtii concern the electron source for H2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulosebisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H2-production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H2 also in the presence of sulfur, H2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype. The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H2 evolution.


Applied and Environmental Microbiology | 2005

Autotrophic and Mixotrophic Hydrogen Photoproduction in Sulfur-Deprived Chlamydomonas Cells

Swanny Fouchard; Anja Hemschemeier; Amandine Caruana; Jérémy Pruvost; Jack Legrand; Thomas Happe; Gilles Peltier; Laurent Cournac

ABSTRACT In Chlamydomonas reinhardtii cells, H2 photoproduction can be induced in conditions of sulfur deprivation in the presence of acetate. The decrease in photosystem II (PSII) activity induced by sulfur deprivation leads to anoxia, respiration becoming higher than photosynthesis, thereby allowing H2 production. Two different electron transfer pathways, one PSII dependent and the other PSII independent, have been proposed to account for H2 photoproduction. In this study, we investigated the contribution of both pathways as well as the acetate requirement for H2 production in conditions of sulfur deficiency. By using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a PSII inhibitor, which was added at different times after the beginning of sulfur deprivation, we show that PSII-independent H2 photoproduction depends on previously accumulated starch resulting from previous photosynthetic activity. Starch accumulation was observed in response to sulfur deprivation in mixotrophic conditions (presence of acetate) but also in photoautotrophic conditions. However, no H2 production was measured in photoautotrophy if PSII was not inhibited by DCMU, due to the fact that anoxia was not reached. When DCMU was added at optimal starch accumulation, significant H2 production was measured. H2 production was enhanced in autotrophic conditions by removing O2 using N2 bubbling, thereby showing that substantial H2 production can be achieved in the absence of acetate by using the PSII-independent pathway. Based on these data, we discuss the possibilities of designing autotrophic protocols for algal H2 photoproduction.


Photosynthesis Research | 2009

Analytical approaches to photobiological hydrogen production in unicellular green algae

Anja Hemschemeier; Anastasios Melis; Thomas Happe

Several species of unicellular green algae, such as the model green microalga Chlamydomonas reinhardtii, can operate under either aerobic photosynthesis or anaerobic metabolism conditions. A particularly interesting metabolic condition is that of “anaerobic oxygenic photosynthesis”, whereby photosynthetically generated oxygen is consumed by the cell’s own respiration, causing anaerobiosis in the culture in the light, and induction of the cellular “hydrogen metabolism” process. The latter entails an alternative photosynthetic electron transport pathway, through the oxygen-sensitive FeFe-hydrogenase, leading to the light-dependent generation of molecular hydrogen in the chloroplast. The FeFe-hydrogenase is coupled to the reducing site of photosystem-I via ferredoxin and is employed as an electron-pressure valve, through which electrons are dissipated, thus permitting a sustained electron transport in the thylakoid membrane of photosynthesis. This hydrogen gas generating process in the cells offers testimony to the unique photosynthetic metabolism that can be found in many species of green microalgae. Moreover, it has attracted interest by the biotechnology and bioenergy sectors, as it promises utilization of green microalgae and the process of photosynthesis in renewable energy production. This article provides an overview of the principles of photobiological hydrogen production in microalgae and addresses in detail the process of induction and analysis of the hydrogen metabolism in the cells. Furthermore, methods are discussed by which the interaction of photosynthesis, respiration, cellular metabolism, and H2 production in Chlamydomonas can be monitored and regulated.


The Plant Cell | 2011

Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii

Dimitri Tolleter; Bart Ghysels; Jean Alric; Dimitris Petroutsos; Irina Tolstygina; Danuta Krawietz; Thomas Happe; Pascaline Auroy; Jean-Marc Adriano; Audrey Beyly; Stéphan Cuiné; Julie Plet; Ilja M. Reiter; Bernard Genty; Laurent Cournac; Michael Hippler; Gilles Peltier

This work describes a Chlamydomonas mutant (pgrl1) isolated from a screen designed to identify new photosynthetic regulatory mechanisms. It provides evidence that in the wild type, photosynthetic electron supply to hydrogenase is severely limited by the proton gradient generated by cyclic electron flow, opening new perspective towards optimizing hydrogen production by microalgae. Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production.


Microbiology | 2010

The surprising diversity of clostridial hydrogenases: a comparative genomic perspective

Magdalena Calusinska; Thomas Happe; Bernard Joris; Annick Wilmotte

Among the large variety of micro-organisms capable of fermentative hydrogen production, strict anaerobes such as members of the genus Clostridium are the most widely studied. They can produce hydrogen by a reversible reduction of protons accumulated during fermentation to dihydrogen, a reaction which is catalysed by hydrogenases. Sequenced genomes provide completely new insights into the diversity of clostridial hydrogenases. Building on previous reports, we found that [FeFe] hydrogenases are not a homogeneous group of enzymes, but exist in multiple forms with different modular structures and are especially abundant in members of the genus Clostridium. This unusual diversity seems to support the central role of hydrogenases in cell metabolism. In particular, the presence of multiple putative operons encoding multisubunit [FeFe] hydrogenases highlights the fact that hydrogen metabolism is very complex in this genus. In contrast with [FeFe] hydrogenases, their [NiFe] hydrogenase counterparts, widely represented in other bacteria and archaea, are found in only a few clostridial species. Surprisingly, a heteromultimeric Ech hydrogenase, known to be an energy-converting [NiFe] hydrogenase and previously described only in methanogenic archaea and some sulfur-reducing bacteria, was found to be encoded by the genomes of four cellulolytic strains: Clostridum cellulolyticum, Clostridum papyrosolvens, Clostridum thermocellum and Clostridum phytofermentans.


Trends in Biochemical Sciences | 2002

Iron hydrogenases--ancient enzymes in modern eukaryotes.

David S. Horner; Burkhard Heil; Thomas Happe; T. Martin Embley

The distribution of [Fe]-hydrogenases was once thought to be limited to a small number of bacteria and a few peculiar hydrogen-producing anaerobic eukaryotes. However, it is now clear that [Fe]-hydrogenases are more widely distributed among eukaryotes than reports of hydrogen production have suggested. Indeed, genes bearing the hallmark signatures of [Fe]-hydrogenases are found both in our own genome and in the genomes of other higher eukaryotes. At present, the functions of most of these new proteins remain unknown; it is not even known whether they can all make hydrogen. Radical new hypotheses have suggested that hydrogenases played a key role in the formation of the eukaryotic cell. These unique enzymes have thus moved from the margins of eukaryotic biology to become the focus of intense speculation and interest. This article summarizes current knowledge of their distribution, evolution and biochemistry.


Applied and Environmental Microbiology | 2005

Homologous and Heterologous Overexpression in Clostridium acetobutylicum and Characterization of Purified Clostridial and Algal Fe-Only Hydrogenases with High Specific Activities

Laurence Girbal; Gregory von Abendroth; Martin Winkler; Paul M. C. Benton; Isabelle Meynial-Salles; Christian Croux; John W. Peters; Thomas Happe; Philippe Soucaille

ABSTRACT Clostridium acetobutylicum ATCC 824 was selected for the homologous overexpression of its Fe-only hydrogenase and for the heterologous expressions of the Chlamydomonas reinhardtii and Scenedesmus obliquus HydA1 Fe-only hydrogenases. The three Strep tag II-tagged Fe-only hydrogenases were isolated with high specific activities by two-step column chromatography. The purified algal hydrogenases evolve hydrogen with rates of around 700 μmol H2 min−1 mg−1, while HydA from C. acetobutylicum (HydACa) shows the highest activity (5,522 μmol H2 min−1 mg−1) in the direction of hydrogen uptake. Further, kinetic parameters and substrate specificity were reported. An electron paramagnetic resonance (EPR) analysis of the thionin-oxidized HydACa protein indicates a characteristic rhombic EPR signal that is typical for the oxidized H cluster of Fe-only hydrogenases.

Collaboration


Dive into the Thomas Happe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven T. Stripp

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Michael Haumann

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge