Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Heuser is active.

Publication


Featured researches published by Thomas Heuser.


Journal of Cell Biology | 2009

The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella.

Thomas Heuser; Milen Raytchev; Jeremy Krell; Mary E. Porter; Daniela Nicastro

Elegant cryoelectron tomography reveals that the nexin link between microtubule doublets in 9 + 2 axonemal structures, critical for their ability to bend, is the dynein regulatory complex.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cryo-electron tomography reveals conserved features of doublet microtubules in flagella

Daniela Nicastro; Xiaofeng Fu; Thomas Heuser; Alan Tso; Mary E. Porter; Richard W. Linck

The axoneme forms the essential and conserved core of cilia and flagella. We have used cryo-electron tomography of Chlamydomonas and sea urchin flagella to answer long-standing questions and to provide information about the structure of axonemal doublet microtubules (DMTs). Solving an ongoing controversy, we show that B-tubules of DMTs contain exactly 10 protofilaments (PFs) and that the inner junction (IJ) and outer junction between the A- and B-tubules are fundamentally different. The outer junction, crucial for the initiation of doublet formation, appears to be formed by close interactions between the tubulin subunits of three PFs with unusual tubulin interfaces; other investigators have reported that this junction is weakened by mutations affecting posttranslational modifications of tubulin. The IJ consists of an axially periodic ladder-like structure connecting tubulin PFs of the A- and B-tubules. The recently discovered microtubule inner proteins (MIPs) on the inside of the A- and B-tubules are more complex than previously thought. They are composed of alternating small and large subunits with periodicities of 16 and/or 48 nm. MIP3 forms arches connecting B-tubule PFs, contrary to an earlier report that MIP3 forms the IJ. Finally, the “beak” structures within the B-tubules of Chlamydomonas DMT1, DMT5, and DMT6 are clearly composed of a longitudinal band of proteins repeating with a periodicity of 16 nm. These findings, discussed in relation to genetic and biochemical data, provide a critical foundation for future work on the molecular assembly and stability of the axoneme, as well as its function in motility and sensory transduction.


Nature Communications | 2014

Membrane deformation and scission by the HSV-1 nuclear egress complex

Janna M. Bigalke; Thomas Heuser; Daniela Nicastro; Ekaterina E. Heldwein

The nuclear egress complex (NEC) of herpesviruses such as HSV-1 is essential for the exit of nascent capsids from the cell nucleus. The NEC drives nuclear envelope vesiculation in cells, but the precise budding mechanism and the potential involvement of cellular proteins are unclear. Here we report that HSV-1 NEC alone is sufficient for membrane budding in vitro and thus represents a complete membrane deformation and scission machinery. It forms ordered coats on the inner surface of budded vesicles, suggesting that it mediates scission by scaffolding the membrane bud and constricting the neck to the point of scission. The inward topology of NEC-mediated budding in vitro resembles capsid budding into the inner nuclear membrane during HSV-1 infection and nuclear envelope vesiculation in NEC-transfected cells. We propose that the NEC functions as minimal virus-encoded membrane-budding machinery during nuclear egress and does not require additional cellular factors.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein

Thomas Heuser; Cynthia F. Barber; Jianfeng Lin; Jeremy Krell; Matthew Rebesco; Mary E. Porter; Daniela Nicastro

Cilia and flagella are highly conserved motile and sensory organelles in eukaryotes, and defects in ciliary assembly and motility cause many ciliopathies. The two-headed I1 inner arm dynein is a critical regulator of ciliary and flagellar beating. To understand I1 architecture and function better, we analyzed the 3D structure and composition of the I1 dynein in Chlamydomonas axonemes by cryoelectron tomography and subtomogram averaging. Our data revealed several connections from the I1 dynein to neighboring structures that are likely to be important for assembly and/or regulation, including a tether linking one I1 motor domain to the doublet microtubule and doublet-specific differences potentially contributing to the asymmetrical distribution of dynein activity required for ciliary beating. We also imaged three I1 mutants and analyzed their polypeptide composition using 2D gel-based proteomics. Structural and biochemical comparisons revealed the likely location of the regulatory IC138 phosphoprotein and its associated subcomplex. Overall, our studies demonstrate that I1 dynein is connected to multiple structures within the axoneme, and therefore ideally positioned to integrate signals that regulate ciliary motility.


Molecular Biology of the Cell | 2011

The CSC is required for complete radial spoke assembly and wild-type ciliary motility.

Erin E. Dymek; Thomas Heuser; Daniela Nicastro; Elizabeth F. Smith

Structural and functional analyses of artificial micro RNA (amiRNA) mutants reveal that the CSC plays a role not only in generating wild-type motility, but also in assembly of at least a subset of radial spokes. This study also produced the unexpected finding that, contrary to current belief, the radial spokes may not be homogeneous.


Molecular Biology of the Cell | 2012

Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella

Cynthia F. Barber; Thomas Heuser; Blanca I. Carbajal-González; Vladimir V. Botchkarev; Daniela Nicastro

Cryo–electron tomography of Chlamydomonas flagella reveals previously uncharacterized features of the radial spokes, including structural heterogeneity and direct interactions with dyneins and between the spoke heads. A “radial spoke 3 stand-in” occupies what would be the site of a third spoke in organisms with spoke triplets.


Molecular Biology of the Cell | 2012

The CSC connects three major axonemal complexes involved in dynein regulation

Thomas Heuser; Erin E. Dymek; Jianfeng Lin; Elizabeth F. Smith; Daniela Nicastro

This study reveals the 3D structure of the CSC and its connections to three major axonemal complexes involved in dynein regulation, including the distal radial spoke and the nexin-DRC. The findings corroborate radial spoke heterogeneity and suggest a unique role for the distal spoke in calcium-mediated signal transduction and flagellar motility.


Cytoskeleton | 2012

The structural heterogeneity of radial spokes in cilia and flagella is conserved.

Jianfeng Lin; Thomas Heuser; Blanca I. Carbajal-González; Kangkang Song; Daniela Nicastro

Radial spokes (RSs) are ubiquitous components of motile cilia and flagella and play an essential role in transmitting signals that regulate the activity of the dynein motors, and thus ciliary and flagellar motility. In some organisms, the 96 nm axonemal repeat unit contains only a pair of spokes, RS1 and RS2, while most organisms have spoke triplets with an additional spoke RS3. The spoke pairs in Chlamydomonas flagella have been well characterized, while spoke triplets have received less attention. Here, we used cryoelectron tomography and subtomogram averaging to visualize the three‐dimensional structure of spoke triplets in Strongylocentrotus purpuratus (sea urchin) sperm flagella in unprecedented detail. Only small differences were observed between RS1 and RS2, but the structure of RS3 was surprisingly unique and structurally different from the other two spokes. We observed novel doublet specific features that connect RS2, RS3, and the nexin‐dynein regulatory complex, three key ciliary and flagellar structures. The distribution of these doublet specific structures suggests that they could be important for establishing the asymmetry of dynein activity required for the oscillatory movement of cilia and flagella. Surprisingly, a comparison with other organisms demonstrated both that this considerable RS heterogeneity is conserved and that organisms with RS pairs contain the basal part of RS3. This conserved RS heterogeneity may also reflect functional differences between the spokes and their involvement in regulating ciliary and flagellar motility.


Cytoskeleton | 2013

Conserved structural motifs in the central pair complex of eukaryotic flagella

Blanca I. Carbajal-González; Thomas Heuser; Xiaofeng Fu; Jianfeng Lin; Brandon W. Smith; David R. Mitchell; Daniela Nicastro

Cilia and flagella are conserved hair‐like appendages of eukaryotic cells that function as sensing and motility generating organelles. Motility is driven by thousands of axonemal dyneins that require precise regulation. One essential motility regulator is the central pair complex (CPC) and many CPC defects cause paralysis of cilia/flagella. Several human diseases, such as immotile cilia syndrome, show CPC abnormalities, but little is known about the detailed three‐dimensional (3D) structure and function of the CPC. The CPC is located in the center of typical [9+2] cilia/flagella and is composed of two singlet microtubules (MTs), each with a set of associated projections that extend toward the surrounding nine doublet MTs. Using cryo‐electron tomography coupled with subtomogram averaging, we visualized and compared the 3D structures of the CPC in both the green alga Chlamydomonas and the sea urchin Strongylocentrotus at the highest resolution published to date. Despite the evolutionary distance between these species, their CPCs exhibit remarkable structural conservation. We identified several new projections, including those that form the elusive sheath, and show that the bridge has a more complex architecture than previously thought. Organism‐specific differences include the presence of MT inner proteins in Chlamydomonas, but not Strongylocentrotus, and different overall outlines of the highly connected projection network, which forms a round‐shaped cylinder in algae, but is more oval in sea urchin. These differences could be adaptations to the mechanical requirements of the rotating CPC in Chlamydomonas, compared to the Strongylocentrotus CPC which has a fixed orientation.


PLOS ONE | 2012

One of the Nine Doublet Microtubules of Eukaryotic Flagella Exhibits Unique and Partially Conserved Structures

Jianfeng Lin; Thomas Heuser; Kangkang Song; Xiaofeng Fu; Daniela Nicastro

The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets remain largely uncharacterized. These doublet-specific structures introduce asymmetry into the axoneme and are likely important for the spatial control of local microtubule sliding. Here, we used cryo-electron tomography and doublet-specific averaging to determine the 3D structures of individual doublets in the flagella of two evolutionarily distant organisms, the protist Chlamydomonas and the sea urchin Strongylocentrotus. We demonstrate that, in both organisms, one of the nine doublets exhibits unique structural features. Some of these features are highly conserved, such as the inter-doublet link i-SUB5-6, which connects this doublet to its neighbor with a periodicity of 96 nm. We also show that the previously described inter-doublet links attached to this doublet, the o-SUB5-6 in Strongylocentrotus and the proximal 1–2 bridge in Chlamydomonas, are likely not homologous features. The presence of inter-doublet links and reduction of dynein arms indicate that inter-doublet sliding of this unique doublet against its neighbor is limited, providing a rigid plane perpendicular to the flagellar bending plane. These doublet-specific features and the non-sliding nature of these connected doublets suggest a structural basis for the asymmetric distribution of dynein activity and inter-doublet sliding, resulting in quasi-planar waveforms typical of 9+2 cilia and flagella.

Collaboration


Dive into the Thomas Heuser's collaboration.

Top Co-Authors

Avatar

Daniela Nicastro

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge