Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Hielscher is active.

Publication


Featured researches published by Thomas Hielscher.


Nature | 2012

Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma

Jeremy Schwartzentruber; Andrey Korshunov; Xiao Yang Liu; David T. W. Jones; Elke Pfaff; Karine Jacob; Dominik Sturm; Adam M. Fontebasso; Dong Anh Khuong Quang; Martje Tönjes; Volker Hovestadt; Steffen Albrecht; Marcel Kool; André Nantel; Carolin Konermann; Anders M. Lindroth; Natalie Jäger; Tobias Rausch; Marina Ryzhova; Jan O. Korbel; Thomas Hielscher; Péter Hauser; Miklós Garami; Almos Klekner; László Bognár; Martin Ebinger; Martin U. Schuhmann; Wolfram Scheurlen; Arnulf Pekrun; Michael C. Frühwald

Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.


Cancer Cell | 2012

Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma

Dominik Sturm; Hendrik Witt; Volker Hovestadt; Dong Anh Khuong-Quang; David T. W. Jones; Carolin Konermann; Elke Pfaff; Martje Tönjes; Martin Sill; Sebastian Bender; Marcel Kool; Marc Zapatka; Natalia Becker; Manuela Zucknick; Thomas Hielscher; Xiao Yang Liu; Adam M. Fontebasso; Marina Ryzhova; Steffen Albrecht; Karine Jacob; Marietta Wolter; Martin Ebinger; Martin U. Schuhmann; Timothy Van Meter; Michael C. Frühwald; Holger Hauch; Arnulf Pekrun; Bernhard Radlwimmer; Tim Niehues; Gregor Von Komorowski

Glioblastoma (GBM) is a brain tumor that carries a dismal prognosis and displays considerable heterogeneity. We have recently identified recurrent H3F3A mutations affecting two critical amino acids (K27 and G34) of histone H3.3 in one-third of pediatric GBM. Here, we show that each H3F3A mutation defines an epigenetic subgroup of GBM with a distinct global methylation pattern, and that they are mutually exclusive with IDH1 mutations, which characterize a third mutation-defined subgroup. Three further epigenetic subgroups were enriched for hallmark genetic events of adult GBM and/or established transcriptomic signatures. We also demonstrate that the two H3F3A mutations give rise to GBMs in separate anatomic compartments, with differential regulation of transcription factors OLIG1, OLIG2, and FOXG1, possibly reflecting different cellular origins.


Journal of Clinical Oncology | 2011

Medulloblastoma Comprises Four Distinct Molecular Variants

Paul A. Northcott; Andrey Korshunov; Hendrik Witt; Thomas Hielscher; Charles G. Eberhart; Stephen C. Mack; Eric Bouffet; Steven C. Clifford; Cynthia Hawkins; Pim J. French; James T. Rutka; Stefan Pfister; Michael D. Taylor

PURPOSE Recent genomic approaches have suggested the existence of multiple distinct subtypes of medulloblastoma. We studied a large cohort of medulloblastomas to determine how many subgroups of the disease exist, how they differ, and the extent of overlap between subgroups. METHODS We determined gene expression profiles and DNA copy number aberrations for 103 primary medulloblastomas. Bioinformatic tools were used for class discovery of medulloblastoma subgroups based on the most informative genes in the data set. Immunohistochemistry for subgroup-specific signature genes was used to determine subgroup affiliation for 294 nonoverlapping medulloblastomas on two independent tissue microarrays. RESULTS Multiple unsupervised analyses of transcriptional profiles identified the following four distinct, nonoverlapping molecular variants: WNT, SHH, group C, and group D. Supervised analysis of these four subgroups revealed significant subgroup-specific demographics, histology, metastatic status, and DNA copy number aberrations. Immunohistochemistry for DKK1 (WNT), SFRP1 (SHH), NPR3 (group C), and KCNA1 (group D) could reliably and uniquely classify formalin-fixed medulloblastomas in approximately 98% of patients. Group C patients (NPR3-positive tumors) exhibited a significantly diminished progression-free and overall survival irrespective of their metastatic status. CONCLUSION Our integrative genomics approach to a large cohort of medulloblastomas has identified four disparate subgroups with distinct demographics, clinical presentation, transcriptional profiles, genetic abnormalities, and clinical outcome. Medulloblastomas can be reliably assigned to subgroups through immunohistochemistry, thereby making medulloblastoma subclassification widely available. Future research on medulloblastoma and the development of clinical trials should take into consideration these four distinct types of medulloblastoma.


Cancer Cell | 2011

Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma.

Hendrik Witt; Stephen C. Mack; Marina Ryzhova; Sebastian Bender; Martin Sill; Ruth Isserlin; Axel Benner; Thomas Hielscher; Till Milde; Marc Remke; David T. W. Jones; Paul A. Northcott; Livia Garzia; Kelsey C. Bertrand; Andrea Wittmann; Yuan Yao; Stephen S. Roberts; Luca Massimi; Tim Van Meter; William A. Weiss; Nalin Gupta; Wiesia Grajkowska; Boleslaw Lach; Yoon-Jae Cho; Andreas von Deimling; Andreas E. Kulozik; Olaf Witt; Gary D. Bader; Cynthia Hawkins; Uri Tabori

Despite the histological similarity of ependymomas from throughout the neuroaxis, the disease likely comprises multiple independent entities, each with a distinct molecular pathogenesis. Transcriptional profiling of two large independent cohorts of ependymoma reveals the existence of two demographically, transcriptionally, genetically, and clinically distinct groups of posterior fossa (PF) ependymomas. Group A patients are younger, have laterally located tumors with a balanced genome, and are much more likely to exhibit recurrence, metastasis at recurrence, and death compared with Group B patients. Identification and optimization of immunohistochemical (IHC) markers for PF ependymoma subgroups allowed validation of our findings on a third independent cohort, using a human ependymoma tissue microarray, and provides a tool for prospective prognostication and stratification of PF ependymoma patients.


Blood | 2012

Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p

Kai Neben; Henk M. Lokhorst; Anna Jauch; Uta Bertsch; Thomas Hielscher; Bronno van der Holt; Hans Salwender; Igor Wolfgang Blau; Katja Weisel; Michael Pfreundschuh; Christof Scheid; Ulrich Dührsen; Walter Lindemann; Ingo G.H. Schmidt-Wolf; Norma Peter; Christian Teschendorf; Hans Martin; Mathias Haenel; Hans Günter Derigs; Marc S. Raab; Anthony D. Ho; Helgi van de Velde; Dirk Hose; Pieter Sonneveld; Hartmut Goldschmidt

In patients with multiple myeloma (MM), risk stratification by chromosomal abnormalities may enable a more rational selection of therapeutic approaches. In the present study, we analyzed the prognostic value of 12 chromosomal abnormalities in a series of 354 MM patients treated within the HOVON-65/GMMG-HD4 trial. Because of the 2-arm design of the study, we were able to analyze the effect of a bortezomib-based treatment before and after autologous stem cell transplantation (arm B) compared with standard treatment without bortezomib (arm A). For allanalyzed chromosomal aberrations, progression-free survival (PFS) and overall survival (OS) were at least equal or superior in the bortezomib arm compared with the standard arm. Strikingly, patients with del(17p13) benefited the most from the bortezomib-containing treatment: the median PFS in arm A was 12.0 months and in arm B it was 26.2 months (P = .024); the 3 year-OS for arm A was 17% and for arm B it was 69% (P = .028). After multivariate analysis, del(17p13) was an independent predictor for PFS (P < .0001) and OS (P < .0001) in arm A, whereas no statistically significant effect on PFS (P = .28) or OS (P = .12) was seen in arm B. In conclusion, the adverse impact of del(17p13) on PFS and OS could be significantly reduced by bortezomib-based treatment, suggesting that long-term administration of bortezomib should be recommended for patients carrying del(17p13).


Journal of Clinical Oncology | 2010

Prognostic Significance of Focal Lesions in Whole-Body Magnetic Resonance Imaging in Patients With Asymptomatic Multiple Myeloma

Jens Hillengass; Kerstin Fechtner; Marc-André Weber; Tobias Bäuerle; Sofia Ayyaz; Christiane Heiss; Thomas Hielscher; Thomas Moehler; Gerlinde Egerer; Kai Neben; Anthony D. Ho; Hans-Ulrich Kauczor; Stefan Delorme; Hartmut Goldschmidt

PURPOSE With whole-body magnetic resonance imaging (wb-MRI), almost the whole bone marrow compartment can be examined in patients with monoclonal plasma cell disease. Focal lesions (FLs) detected by spinal MRI have been of prognostic significance in symptomatic multiple myeloma (sMM). In this study, we investigated the prognostic significance of FLs in wb-MRI in patients with asymptomatic multiple myeloma (aMM). PATIENTS AND METHODS Wb-MRI was performed in 149 patients with aMM. The prognostic significance of the presence and absence, as well as the number, of FLs for progression into sMM was analyzed. RESULTS FLs were present in 28% of patients. The presence per se of FLs and a number of greater than one FL were the strongest adverse prognostic factors for progression into sMM (P < .001) in multivariate analysis. A diffuse infiltration pattern in MRI, a monoclonal protein of 40 g/L or greater, and a plasma cell infiltration in bone marrow of 20% or greater were other adverse prognostic factors for progression-free survival in univariate analysis. CONCLUSION We recommend use of wb-MRI for risk stratification of patients with asymptomatic multiple myeloma.


Journal of Clinical Oncology | 2010

Molecular Staging of Intracranial Ependymoma in Children and Adults

Andrey Korshunov; Hendrik Witt; Thomas Hielscher; Axel Benner; Marc Remke; Marina Ryzhova; Till Milde; Sebastian Bender; Andrea Wittmann; Anna Schöttler; Andreas E. Kulozik; Olaf Witt; Andreas von Deimling; Peter Lichter; Stefan M. Pfister

PURPOSE The biologic behavior of intracranial ependymoma is unpredictable on the basis of current staging approaches. We aimed at the identification of recurrent genetic aberrations in ependymoma and evaluated their prognostic significance to develop a molecular staging system that could complement current classification criteria. PATIENTS AND METHODS As a screening cohort, we studied a cohort of 122 patients with ependymoma before standardized therapy by using array-based comparative genomic hybridization. DNA copy-number aberrations identified as possible prognostic markers were validated in an independent cohort of 170 patients with ependymoma by fluorescence in situ hybridization analysis. Copy-number aberrations were correlated with clinical, histopathologic, and survival data. RESULTS In the screening cohort, age at diagnosis, gain of 1q, and homozygous deletion of CDKN2A comprised the most powerful independent indicators of unfavorable prognosis. In contrast, gains of chromosomes 9, 15q, and 18 and loss of chromosome 6 were associated with excellent survival. On the basis of these findings, we developed a molecular staging system comprised of three genetic risk groups, which was then confirmed in the validation cohort. Likelihood ratio tests and multivariate Cox regression also demonstrated the clear improvement in predictive accuracy after the addition of these novel genetic markers. CONCLUSION Genomic aberrations in ependymomas are powerful independent markers of disease progression and survival. By adding genetic markers to established clinical and histopathologic variables, outcome prediction can potentially be improved. Because the analyses can be conducted on routine paraffin-embedded material, it will now be possible to prospectively validate these markers in multicenter clinical trials on population-based cohorts.


Journal of Clinical Oncology | 2011

Adult Medulloblastoma Comprises Three Major Molecular Variants

Marc Remke; Thomas Hielscher; Paul A. Northcott; Hendrik Witt; Marina Ryzhova; Andrea Wittmann; Axel Benner; Andreas von Deimling; Wolfram Scheurlen; Arie Perry; Sidney Croul; Andreas E. Kulozik; Peter Lichter; Michael D. Taylor; Stefan M. Pfister; Andrey Korshunov

PURPOSE Medulloblastoma is a rare primary brain tumor in adults, whereas it constitutes the most common malignant brain tumor in children. Integrated genomics approaches revealed at least four distinct disease variants in children. The aim of this study was to investigate molecular subtypes and their prognostic implication in a large cohort of adult medulloblastomas as the biology in this age group remains poorly understood. PATIENTS AND METHODS We combined transcriptome and DNA copy number analyses for 28 adult medulloblastomas. Statistical and bioinformatic tools were applied to discover distinct molecular variants. Clinical and molecular characteristics of each biologic subtype were validated using immunohistochemistry on a tissue microarray derived from an independent patient cohort of adult medulloblastomas (n = 103). RESULTS Gene expression profiles revealed three distinct molecular variants with stable subtype separation using the 300 most varying transcripts. Distinct demographics, genetics, transcriptome, and prognosis were noted for each subtype of adult medulloblastoma. Immunohistochemistry revealed aberrant activation of the sonic hedgehog (SHH) pathway in over half of adult medulloblastomas constituting a promising molecular therapeutic target. In contrast, subtype C tumors, which comprise a robust subtype in childhood medulloblastoma are only exceptionally seen in adult cohorts. Notably, adult subtype D and Wnt/wingless tumors were associated with worse prognosis than pediatric cohorts, whereas survival for SHH tumors was similar for both age groups. CONCLUSION The transcriptome of adult medulloblastomas differs considerably from pediatric counterparts, both in terms of tumor biology and prognostic impact. Therefore, age-specific classification is required and must be adapted for use in clinical trials of adult medulloblastoma.


Haematologica | 2011

Proliferation is a central independent prognostic factor and target for personalized and risk adapted treatment in multiple myeloma

Dirk Hose; Thierry Rème; Thomas Hielscher; Jérôme Moreaux; Tobias Messner; Anja Seckinger; Axel Benner; John D. Shaughnessy; Bart Barlogie; Yiming Zhou; Jens Hillengass; Uta Bertsch; Kai Neben; Thomas Möhler; Jean François Rossi; Anna Jauch; Bernard Klein; Hartmut Goldschmidt

Background Proliferation of malignant plasma cells is a strong adverse prognostic factor in multiple myeloma and simultaneously targetable by available (e.g. tubulin polymerase inhibitors) and upcoming (e.g. aurora kinase inhibitors) compounds. Design and Methods We assessed proliferation using gene expression-based indices in 757 samples including independent cohorts of 298 and 345 samples of CD138-purified myeloma cells from previously untreated patients undergoing high-dose chemotherapy, together with clinical prognostic factors, chromosomal aberrations, and gene expression-based high-risk scores. Results In the two cohorts, 43.3% and 39.4% of the myeloma cell samples showed a proliferation index above the median plus three standard deviations of normal bone marrow plasma cells. Malignant plasma cells of patients in advanced stages or those harboring disease progression-associated gain of 1q21 or deletion of 13q14.3 showed significantly higher proliferation indices; patients with gain of chromosome 9, 15 or 19 (hyperdiploid samples) had significantly lower proliferation indices. Proliferation correlated with the presence of chromosomal aberrations in metaphase cytogenetics. It was significantly predictive for event-free and overall survival in both cohorts, allowed highly predictive risk stratification (e.g. event-free survival 12.7 versus 26.2 versus 40.6 months, P<0.001) of patients, and was largely independent of clinical prognostic factors, e.g. serum β2-microglobulin, International Staging System stage, associated high-risk chromosomal aberrations, e.g. translocation t(4;14), and gene expression-based high-risk scores. Conclusions Proliferation assessed by gene expression profiling, being independent of serum-β2-microglobulin, International Staging System stage, t(4;14), and gene expression-based risk scores, is a central prognostic factor in multiple myeloma. Surrogating a biological targetable variable, gene expression-based assessment of proliferation allows selection of patients for risk-adapted anti-proliferative treatment on the background of conventional and gene expression-based risk factors.


Haematologica | 2010

Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation

Kai Neben; Anna Jauch; Uta Bertsch; Christiane Heiss; Thomas Hielscher; Anja Seckinger; Tina Mors; Nadine Müller; Jens Hillengass; Marc S. Raab; Anthony D. Ho; Dirk Hose; Hartmut Goldschmidt

Background Chromosomal abnormalities have been shown to play a major role in disease evolution of multiple myeloma. Specific changes in interphase cells can be detected by fluorescent in situ hybridization, which overcomes the problem of the lack of dividing cells required for conventional cytogenetics. Design and Methods We analyzed the prognostic value of 12 frequent chromosomal abnormalities detected by fluorescent in situ hybridization in a series of patients (n=315) with newly diagnosed, symptomatic multiple myeloma. All patients underwent frontline autologous stem cell transplantation according to the GMMG-HD3- or GMMG-HD4-trial protocols or analogous protocols. Results Univariate statistical analyses revealed that the presence of del(13q14), del(17p13), t(4;14), +1q21 and non-hyperdiploidy was associated with adverse progression-free and overall survival rates independently of the International Staging System (ISS) classification. Multivariate analyses showed that only t(4;14) and del(17p13) retained prognostic value for both progression-free and overall survival. According to the presence or absence of t(4;14) and del(17p13) and the patients’ International Staging System classification, the cohort could be stratified into three distinct groups: a group with a favorable prognosis [absence of t(4;14)/del(17p13) and ISS I], a group with a poor prognosis [presence of t(4;14)/del(17p13) and ISS II/III] and a group with an intermediate prognosis (all remaining patients). The probabilities of overall survival at 5 years decreased from 72% in the favorable prognostic group to 62% (hazard ratio 2.4; P=0.01) in the intermediate and 41% (hazard ratio 5.6; P<0.001) in the poor prognostic groups. Conclusions These results have implications for risk-adapted management for patients with multiple myeloma undergoing high-dose chemotherapy followed by autologous stem cell transplantation and suggest that new treatment concepts are urgently needed for patients who belong to the poor prognosis group. As targeted therapies evolve, different treatment options might have variable success, depending on the underlying genetic nature of the clone.

Collaboration


Dive into the Thomas Hielscher's collaboration.

Top Co-Authors

Avatar

Jens Hillengass

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Jauch

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Kai Neben

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar

Andrey Korshunov

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Dirk Hose

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Uta Bertsch

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Stefan M. Pfister

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Andreas von Deimling

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Axel Benner

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge