Thomas I. Maindl
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas I. Maindl.
Astronomy and Astrophysics | 2016
C. Schäfer; Sven Riecker; Thomas I. Maindl; Roland Speith; Samuel Scherrer; Wilhelm Kley
Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request.
Astronomy and Astrophysics | 2015
Thomas I. Maindl; R. Dvorak; H. Lammer; M. Güdel; C. Schäfer; Roland Speith; P. Odert; N. V. Erkaev; K. G. Kislyakova; E. Pilat-Lohinger
Aims. We investigate the influence of impacts of large planetesimals and small planetary embryos on the early Martian surface on the hydrodynamic escape of an early steam atmosphere that is exposed to the high soft X-ray and extreme-ultraviolet (EUV) flux of the young Sun. Methods. Impact statistics in terms of number, masses, velocities, and angles of asteroid impacts onto early Mars are determined via n-body integrations. Based on these statistics, smoothed particle hydrodynamics (SPH) simulations result in estimates of energy transfer into the planetary surface material and the resulting surface heating. For the estimation of the atmospheric escape rates we applied a soft X-ray and EUV absorption model and a 1D upper atmosphere hydrodynamic model to a magma ocean-related catastrophically outgassed steam atmosphere with surface pressure values of 52 bar H2O and 11 bar CO2. Results. The estimated impact rates and energy deposition onto an early Martian surface can account for substantial heating. The energy influx and conversion rate into internal energy is probably sufficient to keep a shallow magma ocean liquid for an extended period of time. Higher surface temperatures keep the outgassed steam atmosphere longer in vapor form and therefore enhance its escape to space within ∼0.6 Myr after its formation.
Astronomische Nachrichten | 2013
Thomas I. Maindl; C. Schäfer; Roland Speith; Áron Süli; Emese Forgács-Dajka; R. Dvorak
We give a brief introduction to smoothed particle hydrodynamics methods for continuum mechanics. Specifically, we present our 3D SPH code to simulate and analyze collisions of asteroids consisting of two types of material: basaltic rock and ice. We consider effects like brittle failure, fragmentation, and merging in different impact scenarios. After validating our code against previously published results we present first collision results based on measured values for the Weibull flaw distribution parameters of basalt. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
The Astrophysical Journal | 2016
Nader Haghighipour; Thomas I. Maindl; C. Schäfer; Roland Speith; R. Dvorak
It has been suggested that the comet-like activity of main belt comets (MBCs) is due to the sublimation of sub-surface water–ice that has been exposed as a result of their surfaces being impacted by meter-sized bodies. We have examined the viability of this scenario by simulating impacts between meter-sized and kilometer-sized objects using a smooth particle hydrodynamics approach. Simulations have been carried out for different values of the impact velocity and impact angle, as well as different target material and water-mass fractions. Results indicate that for the range of impact velocities corresponding to those in the asteroid belt, the depth of an impact crater is slightly larger than 10 m, suggesting that if the activation of MBCs is due to the sublimation of sub-surface water–ice, this ice has to exist no deeper than a few meters from the surface. Results also show that ice exposure occurs in the bottom and on the interior surface of impact craters, as well as on the surface of the target where some of the ejected icy inclusions are re-accreted. While our results demonstrate that the impact scenario is indeed a viable mechanism to expose ice and trigger the activity of MBCs, they also indicate that the activity of the current MBCs is likely due to ice sublimation from multiple impact sites and/or the water contents of these objects (and other asteroids in the outer asteroid belt) is larger than the 5% that is traditionally considered in models of terrestrial planet formation, providing more ice for sublimation. We present the details of our simulations and discuss their results and implications.
Astronomy and Astrophysics | 2015
David Bancelin; Elke Pilat-Lohinger; S. Eggl; Thomas I. Maindl; C. Schäfer; Roland Speith; R. Dvorak
So far, multiple stellar systems harbor more than 130 extra solar planets. Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architecture (i.e. location, size, mass and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (hereafter HZ). In this study, we make a comparison of several binary star systems and their efficiency to move icy asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a belt of 10000 asteroids (remnants from the late phase of planetary formation process) beyond the snow-line. The planetesimals are placed randomly around the primary star and move under the gravitational influence of the two stars and a gas giant. As the planetesimals do not interact with each other, we divided the belt into 100 subrings which were separately integrated. In this statistical study, several double star configurations with a G-type star as primary are investigated. Our results show that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result into a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star can not only favor a faster depletion of our disk of planetesimals but can also bring 4 -- 5 times more water into the whole HZ.
The Astrophysical Journal | 2018
Nader Haghighipour; Thomas I. Maindl; C. Schäfer; O. J. Wandel
It has been suggested that the comet-like activity of Main-belt comets (MBCs) is due to the sublimation of sub-surface water-ice that is exposed when these objects are impacted by meter-sized bodies. We recently examined this scenario and showed that such impacts can, in fact, excavate ice and present a plausible mechanism for triggering the activation of MBCs. However, because the purpose of that study was to prove the concept and identify the most viable ice-longevity model, the porosity of the object and the loss of ice due to the heat of impact were ignored. In this paper, we extend our impact simulations to porous materials and account for the loss of ice due to an impact. We show that for a porous MBC, impact craters are deeper, reaching to ~15 m, implying that if the activation of MBCs is due to the sublimation of sub-surface ice, this ice has to be within the top 15 m of the object. Results also indicate that the loss of ice due to the heat of impact is negligible, and the re-accretion of ejected ice is small. The latter suggests that the activities of current MBCs are most probably from multiple impact sites. Our study also indicates that for sublimation from multiple sites to account for the observed activity of the currently known MBCs, the water content of MBCs (and their parent asteroids) needs to be larger than the values traditionally considered in models of terrestrial planet formation.
Planetary and Space Science | 2017
C. Schäfer; Samuel Scherrer; Robert Buchwald; Thomas I. Maindl; Roland Speith; Wilhelm Kley
Abstract We present recent improvements in the simulation of regolith sampling processes in microgravity using the numerical particle method smooth particle hydrodynamics (SPH). We use an elastic-plastic soil constitutive model for large deformation and failure flows for dynamical behaviour of regolith. In the context of projected small body (asteroid or small moons) sample return missions, we investigate the efficiency and feasibility of a particular material sampling method: Brushes sweep material from the asteroids surface into a collecting tray. We analyze the influence of different material parameters of regolith such as cohesion and angle of internal friction on the sampling rate. Furthermore, we study the sampling process in two environments by varying the surface gravity (Earths and Phobos’) and we apply different rotation rates for the brushes. We find good agreement of our sampling simulations on Earth with experiments and provide estimations for the influence of the material properties on the collecting rate.
arXiv: Earth and Planetary Astrophysics | 2015
R. Dvorak; Thomas I. Maindl; Á. Süli; C. Schäfer; Roland Speith; Christoph Burger
We present preliminary results of terrestrial planet formation using on the one hand classical numerical integration of hundreds of small bodies on CPUs and on the other hand -- for comparison reasons -- the results of our GPU code with thousands of small bodies which then merge to larger ones. To be able to determine the outcome of collision events we use our smooth particle hydrodynamics (SPH) code which tracks how water is lost during such events.
Monthly Notices of the Royal Astronomical Society | 2018
Richard Schwarz; Ákos Bazsó; Nikolaos Georgakarakos; B Loibnegger; Thomas I. Maindl; David Bancelin; Elke Pilat-Lohinger; K G Kislyakova; R. Dvorak; Ian Dobbs-Dixon
The scenario and the efficiency of water transport by icy asteroids and comets are still amongst the most important unresolved questions about the early phases of planetary systems. The detection of Proxima Centauri b (PCb), which moves in the habitable zone, triggered a debate whether or not this planet can be habitable depending on its formation history and available water content. A better understanding of cometary dynamics in extrasolar systems shall provide information about cometary reservoirs and give an insight into water transport especially to planets in the habitable zone. In our study we perform numerous N-body simulations with PCb and an outer reservoir of comets. We investigate close encounters and collisions with the planet, which are important for the transport of water. Observers found hints for a second planet with a period up to 500 days. Our studies show that from the dynamical point of view two planets are stable even for a massive second planet with up to ~ 12 Earth masses. The simulations of a possible second planet yield that this planet can stay in a stable orbit very close to PCb. For the study of exocomets we include an additional planet outside of PCb in our calculations and we also consider the in uence of the binary alpha Centauri. The studies on the dynamics of exocomets reveal that the outer limit for water transport is between 100 and 200 au. From our simulations we estimate the water mass delivered to the planets to be between 0 and 30 Earth oceans.
Frontiers in Astronomy and Space Sciences | 2018
Philip M. Winter; Mattia Alvise Galiazzo; Thomas I. Maindl
In this work we describe a genetic algorithm which is used in order to study orbits of minor bodies in the frames of close encounters. We find that the algorithm in combination with standard orbital numerical integrators can be used as a good proxy for finding typical orbits of minor bodies in close encounters with planets and even their moons, saving a lot of computational time compared to long-term orbital numerical integrations. Here, we study close encounters of Centaurs with Callisto and Ganymede in particular. We also perform n-body numerical simulations for comparison. We find typical impact velocities to be between