Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Browning is active.

Publication


Featured researches published by Thomas J. Browning.


Geophysical Research Letters | 2014

Strong responses of Southern Ocean phytoplankton communities to volcanic ash

Thomas J. Browning; Heather Bouman; Gideon M. Henderson; Tamsin A. Mather; David M. Pyle; Christian Schlosser; E. M. S. Woodward; C. M. Moore

Volcanic eruptions have been hypothesized as an iron supply mechanism for phytoplankton blooms; however, little direct evidence of stimulatory responses has been obtained in the field. Here we present the results of twenty-one 1–2 day bottle enrichment experiments from cruises in the South Atlantic and Southern Ocean which conclusively demonstrated a photophysiological and biomass stimulation of phytoplankton communities following supply of basaltic or rhyolitic volcanic ash. Furthermore, experiments in the Southern Ocean demonstrated significant phytoplankton community responses to volcanic ash supply in the absence of responses to addition of dissolved iron alone. At these sites, dissolved manganese concentrations were among the lowest ever measured in seawater, and we therefore suggest that the enhanced response to ash may have been a result of the relief of manganese (co)limitation. Our results imply that volcanic ash deposition events could trigger extensive phytoplankton blooms, potentially capable of significant impacts on regional carbon cycling.


Nature | 2017

Nutrient co-limitation at the boundary of an oceanic gyre

Thomas J. Browning; Eric P. Achterberg; Insa Rapp; Anja Engel; Erin M. Bertrand; Alessandro Tagliabue; C. Mark Moore

Nutrient limitation of oceanic primary production exerts a fundamental control on marine food webs and the flux of carbon into the deep ocean. The extensive boundaries of the oligotrophic sub-tropical gyres collectively define the most extreme transition in ocean productivity, but little is known about nutrient limitation in these zones. Here we present the results of full-factorial nutrient amendment experiments conducted at the eastern boundary of the South Atlantic gyre. We find extensive regions in which the addition of nitrogen or iron individually resulted in no significant phytoplankton growth over 48 hours. However, the addition of both nitrogen and iron increased concentrations of chlorophyll a by up to approximately 40-fold, led to diatom proliferation, and reduced community diversity. Once nitrogen–iron co-limitation had been alleviated, the addition of cobalt or cobalt-containing vitamin B12 could further enhance chlorophyll a yields by up to threefold. Our results suggest that nitrogen–iron co-limitation is pervasive in the ocean, with other micronutrients also approaching co-deficiency. Such multi-nutrient limitations potentially increase phytoplankton community diversity.


Global Biogeochemical Cycles | 2014

Satellite‐detected fluorescence: Decoupling nonphotochemical quenching from iron stress signals in the South Atlantic and Southern Ocean

Thomas J. Browning; Heather Bouman; C. M. Moore

Satellite-detected sunlight-induced chlorophyll fluorescence could offer valuable information about the physiological status of phytoplankton on a global scale. Realization of this potential is confounded by the considerable uncertainty that exists in deconvolving the multiple ecophysiological processes that can influence the satellite signal. A dominant source of current uncertainty arises from the extent of reductions in chlorophyll fluorescence caused by the high light intensities phytoplankton are typically exposed to when satellite images are captured. In this study, results from over 200 nonphotochemical quenching (NPQ) experiments conducted on cruises spanning from subtropical gyre to Southern Ocean waters have confirmed that satellite fluorescence quantum yields have the potential to reveal broad regions of iron (Fe) stress. However, our results suggest significant variability in phytoplankton NPQ behavior between oceanic regimes. Dynamic NPQ must therefore be considered to achieve a reliable interpretation of satellite fluorescence in terms of Fe stress. Specifically, significantly lower NPQ was found in stratified subtropical gyre-type waters than in well-mixed Southern Ocean waters. Such variability is suggested to result from differences in incident irradiance fluctuation experienced by phytoplankton, with highly variable irradiance conditions likely driving phytoplankton to acclimate or adapt toward a higher dynamic NPQ capacity. Sea surface temperature empirically demonstrated the strongest correlation with NPQ parameters and is presented as a means of correcting the chlorophyll fluorescence signature for the region studied. With these corrections, a decadal composite of satellite austral summer observations is presented for the Southern Ocean, potentially reflecting spatial variability in the distribution and extent of Fe stress.


Frontiers in Marine Science | 2015

Volcanic ash supply to the surface ocean—remote sensing of biological responses and their wider biogeochemical significance

Thomas J. Browning; Katherine Stone; Heather Bouman; Tamsin A. Mather; David M. Pyle; C. Mark Moore; Victor Martinez-Vicente

Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i) synthesize findings from these recent studies; (ii) report the results of a new remote sensing study of ash fertilization; and (iii) calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with 0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean) algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment.


Nature Communications | 2017

Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic.

Thomas J. Browning; Eric P. Achterberg; Jaw Yong; Insa Rapp; Caroline Utermann; Anja Engel; Christopher Mark Moore

In certain regions of the predominantly nitrogen limited ocean, microbes can become co-limited by phosphorus. Within such regions, a proportion of the dissolved organic phosphorus pool can be accessed by microbes employing a variety of alkaline phosphatase (APase) enzymes. In contrast to the PhoA family of APases that utilize zinc as a cofactor, the recent discovery of iron as a cofactor in the more widespread PhoX and PhoD implies the potential for a biochemically dependant interplay between oceanic zinc, iron and phosphorus cycles. Here we demonstrate enhanced natural community APase activity following iron amendment within the low zinc and moderately low iron Western North Atlantic. In contrast we find no evidence for trace metal limitation of APase activity beneath the Saharan dust plume in the Eastern Atlantic. Such intermittent iron limitation of microbial phosphorus acquisition provides an additional facet in the argument for iron controlling the coupling between oceanic nitrogen and phosphorus cycles.


Scientific Reports | 2017

Mechanisms of silver nanoparticle toxicity to the coastal marine diatom Chaetoceros curvisetus

Pablo Lodeiro; Thomas J. Browning; Eric P. Achterberg; Aurélie Guillou; M.S. El-Shahawi

Inputs of silver nanoparticles (AgNPs) to marine waters continue to increase yet mechanisms of AgNPs toxicity to marine phytoplankton are still not well resolved. This study reports a series of toxicity experiments on a representative coastal marine diatom species Chaetoceros curvisetus using the reference AgNP, NM-300K. Exposure to AgNPs resulted in photosynthetic impairment and loss of diatom biomass in proportion to the supplied AgNP dose. The underlying mechanism of toxicity was explored via comparing biological responses in parallel experiments. Diatom responses to AgNP, free Ag(I) species, and dialysis bag-retained AgNP treatments showed marked similarity, pointing towards a dominant role of Ag(I) species uptake, rather than NPs themselves, in inducing the toxic response. In marked contrast to previous studies, addition of the organic complexing agent cysteine (Cys) alongside Ag only marginally moderated toxicity, implying AgCys− complexes were bioavailable to this diatom species. A preliminary field experiment with a natural phytoplankton community in the southeast Atlantic Ocean showed no significant toxic response at a NM-300 K concentration that resulted in ~40% biomass loss in the culture studies, suggesting a modulating effect of natural seawaters on Ag toxicity.


Scientific Data | 2018

Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments

Paul M. Berube; Steven J. Biller; Thomas Hackl; Shane L. Hogle; Brandon M. Satinsky; Jamie William Becker; Rogier Braakman; Sara B. Collins; Libusha Kelly; Jessie W. Berta-Thompson; Allison Coe; Kristin Bergauer; Heather Bouman; Thomas J. Browning; Daniele De Corte; Christel S. Hassler; Yotam Hulata; Jeremy E. Jacquot; Elizabeth W. Maas; Thomas Reinthaler; Eva Sintes; Taichi Yokokawa; Debbie Lindell; Ramunas Stepanauskas; Sallie W. Chisholm

Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography.


Nature Communications | 2018

Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland

Mark J. Hopwood; D. Carroll; Thomas J. Browning; Lorenz Meire; J. Mortensen; Stephan Krisch; Eric P. Achterberg

Runoff from the Greenland Ice Sheet (GrIS) is thought to enhance marine productivity by adding bioessential iron and silicic acid to coastal waters. However, experimental data suggest nitrate is the main summertime growth-limiting resource in regions affected by meltwater around Greenland. While meltwater contains low nitrate concentrations, subglacial discharge plumes from marine-terminating glaciers entrain large quantities of nitrate from deep seawater. Here, we characterize the nitrate fluxes that arise from entrainment of seawater within these plumes using a subglacial discharge plume model. The upwelled flux from 12 marine-terminating glaciers is estimated to be >1000% of the total nitrate flux from GrIS discharge. This plume upwelling effect is highly sensitive to the glacier grounding line depth. For a majority of Greenland’s marine-terminating glaciers nitrate fluxes will diminish as they retreat. This decline occurs even if discharge volume increases, resulting in a negative impact on nitrate availability and thus summertime marine productivity.Discharge from Greenland is known to deliver nutrients to the marine environment. Here, the authors show that the majority of the nutrients fueling summertime productivity downstream of Greenland’s glaciers seemingly originate from entrainment in subglacial discharge plumes rather than from meltwater itself.


Scientific Data | 2018

Marine microbial metagenomes sampled across space and time

Steven J. Biller; Paul M. Berube; Keven Dooley; Madeline Williams; Brandon M. Satinsky; Thomas Hackl; Shane L. Hogle; Allison Coe; Kristin Bergauer; Heather Bouman; Thomas J. Browning; Daniele De Corte; Christel S. Hassler; Debbie A. Hulston; Jeremy E. Jacquot; Elizabeth W. Maas; Thomas Reinthaler; Eva Sintes; Taichi Yokokawa; Sallie W. Chisholm

Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data’s utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems.


Geophysical Research Letters | 2018

Influence of Iron, Cobalt, and Vitamin B12 Supply on Phytoplankton Growth in the Tropical East Pacific During the 2015 El Niño

Thomas J. Browning; Insa Rapp; Christian Schlosser; Martha Gledhill; Eric P. Achterberg; Astrid Bracher; Frederic A. C. Le Moigne

Iron (Fe), cobalt (Co), and vitamin B12 addition experiments were performed in the eastern Equatorial Pacific/Peruvian upwelling zone during the 2015 El Niño event. Near the Peruvian coastline, apparent photosystem II photochemical efficiencies (Fv/Fm) were unchanged by nutrient addition and chlorophyll a tripled in untreated controls over 2 days, indicating nutrient replete conditions. Conversely, Fe amendment further away from the coastline in the high nitrate, low Fe zone significantly increased Fv/Fm and chlorophyll a concentrations. Mean chlorophyll a was further enhanced following supply of Fe + Co and Fe + B12 relative to Fe alone, but this was not statistically significant; further offshore, reported Co depletion relative to Fe could enhance responses. The persistence of Fe limitation in this system under a developing El Niño, as previously demonstrated under non-El Niño conditions, suggests that diminished upwelled Fe is likely an important factor driving reductions in offshore phytoplankton productivity during these events. Plain Language Summary Phytoplankton productivity in the Equatorial Pacific is critical for curbing CO2 outgassing from upwelling waters and sustaining globally important fisheries. We tested which micronutrients were limiting phytoplankton growth in the Equatorial Pacific during the 2015 El Niño. To date evidence for nutrient limitation status during these events remains indirect. We show iron is limiting offshore of Peru and that cobalt or vitamin B12 could be approaching limitation, with limitation by the latter micronutrients possibly becoming more important further offshore. Linked to satellite data, the new results shed light on critical controls on marine productivity in this biogeochemically/economically important region. Our results suggest reduced upwelled iron-predicted under El Niño conditions would be primarily responsible for observed offshore Peru productivity decreases.

Collaboration


Dive into the Thomas J. Browning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. M. S. Woodward

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison Coe

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul M. Berube

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sallie W. Chisholm

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Steven J. Biller

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge