Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Esparza is active.

Publication


Featured researches published by Thomas J. Esparza.


Science | 2008

Amyloid-β Dynamics Correlate with Neurological Status in the Injured Human Brain

David L. Brody; Sandra Magnoni; Kate E. Schwetye; Michael L. Spinner; Thomas J. Esparza; Nino Stocchetti; Gregory J. Zipfel; David M. Holtzman

The amyloid-β peptide (Aβ) plays a central pathophysiological role in Alzheimers disease, but little is known about the concentration and dynamics of this secreted peptide in the extracellular space of the human brain. We used intracerebral microdialysis to obtain serial brain interstitial fluid (ISF) samples in 18 patients who were undergoing invasive intracranial monitoring after acute brain injury. We found a strong positive correlation between changes in brain ISF Aβ concentrations and neurological status, with Aβ concentrations increasing as neurological status improved and falling when neurological status declined. Brain ISF Aβ concentrations were also lower when other cerebral physiological and metabolic abnormalities reflected depressed neuronal function. Such dynamics fit well with the hypothesis that neuronal activity regulates extracellular Aβ concentration.


Annals of Neurology | 2013

Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology controls

Thomas J. Esparza; Hanzhi Zhao; John R. Cirrito; Nigel J. Cairns; Randall J. Bateman; David M. Holtzman; David L. Brody

Although amyloid‐beta (Aβ) peptide deposition into insoluble plaques is a pathological hallmark of Alzheimer disease; soluble oligomeric Aβ has been hypothesized to more directly underlie impaired learning and memory in dementia of the Alzheimer type. However, the lack of a sensitive, specific, and quantitative assay for Aβ oligomers has hampered rigorous tests of this hypothesis.


Science | 2006

Immunological Reversal of Autoimmune Diabetes Without Hematopoietic Replacement of ß Cells

Anish Suri; Boris Calderon; Thomas J. Esparza; Katherine Frederick; Patrice Bittner; Emil R. Unanue

Type 1 diabetes mellitus results from the autoimmune destruction of the β cells of the pancreatic islets of Langerhans and is recapitulated in the nonobese diabetic strain of mice. In an attempt to rescue islet loss, diabetic mice were made normoglycemic by islet transplantation and immunization with Freunds complete adjuvant along with multiple injections of allogeneic male splenocytes. This treatment allowed for survival of transplanted islets and recovery of endogenous β cell function in a proportion of mice, but with no evidence for allogeneic splenocyte–derived differentiation of new islet β cells. Control of the autoimmune disease at a crucial time in diabetogenesis can result in recovery of β cell function.


Brain | 2012

Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury

Sandra Magnoni; Thomas J. Esparza; Valeria Conte; Marco Carbonara; Giorgio Carrabba; David M. Holtzman; Greg Zipfel; Nino Stocchetti; David L. Brody

Axonal injury is believed to be a major determinant of adverse outcomes following traumatic brain injury. However, it has been difficult to assess acutely the severity of axonal injury in human traumatic brain injury patients. We hypothesized that microdialysis-based measurements of the brain extracellular fluid levels of tau and neurofilament light chain, two low molecular weight axonal proteins, could be helpful in this regard. To test this hypothesis, 100 kDa cut-off microdialysis catheters were placed in 16 patients with severe traumatic brain injury at two neurological/neurosurgical intensive care units. Tau levels in the microdialysis samples were highest early and fell over time in all patients. Initial tau levels were >3-fold higher in patients with microdialysis catheters placed in pericontusional regions than in patients in whom catheters were placed in normal-appearing right frontal lobe tissue (P = 0.005). Tau levels and neurofilament light-chain levels were positively correlated (r = 0.6, P = 0.013). Neurofilament light-chain levels were also higher in patients with pericontusional catheters (P = 0.04). Interestingly, initial tau levels were inversely correlated with initial amyloid-β levels measured in the same samples (r = -0.87, P = 0.000023). This could be due to reduced synaptic activity in areas with substantial axonal injury, as amyloid-β release is closely coupled with synaptic activity. Importantly, high initial tau levels correlated with worse clinical outcomes, as assessed using the Glasgow Outcome Scale 6 months after injury (r = -0.6, P = 0.018). Taken together, our data add support for the hypothesis that axonal injury may be related to long-term impairments following traumatic brain injury. Microdialysis-based measurement of tau levels in the brain extracellular space may be a useful way to assess the severity of axonal injury acutely in the intensive care unit. Further studies with larger numbers of patients will be required to assess the reproducibility of these findings and to determine whether this approach provides added value when combined with clinical and radiological information.


PLOS ONE | 2011

Distinct Temporal and Anatomical Distributions of Amyloid-β and Tau Abnormalities following Controlled Cortical Impact in Transgenic Mice

Hien T. Tran; Laura Sanchez; Thomas J. Esparza; David L. Brody

Traumatic brain injury (TBI) is a major environmental risk factor for Alzheimers disease. Intracellular accumulations of amyloid-β and tau proteins have been observed within hours following severe TBI in humans. Similar abnormalities have been recapitulated in young 3xTg-AD mice subjected to the controlled cortical impact model (CCI) of TBI and sacrificed at 24 h and 7 days post injury. This study investigated the temporal and anatomical distributions of amyloid-β and tau abnormalities from 1 h to 24 h post injury in the same model. Intra-axonal amyloid-β accumulation in the fimbria was detected as early as 1 hour and increased monotonically over 24 hours following injury. Tau immunoreactivity in the fimbria and amygdala had a biphasic time course with peaks at 1 hour and 24 hours, while tau immunoreactivity in the contralateral CA1 rose in a delayed fashion starting at 12 hours after injury. Furthermore, rapid intra-axonal amyloid-β accumulation was similarly observed post controlled cortical injury in APP/PS1 mice, another transgenic Alzheimers disease mouse model. Acute increases in total and phospho-tau immunoreactivity were also evident in single transgenic TauP301L mice subjected to controlled cortical injury. These data provide further evidence for the causal effects of moderately severe contusional TBI on acceleration of acute Alzheimer-related abnormalities and the independent relationship between amyloid-β and tau in this setting.


Neurobiology of Disease | 2010

Traumatic brain injury reduces soluble extracellular amyloid-β in mice: A methodologically novel combined microdialysis-controlled cortical impact study

Katherine E. Schwetye; John R. Cirrito; Thomas J. Esparza; Christine L. Mac Donald; David M. Holtzman; David L. Brody

Acute amyloid-β peptide (Aβ) deposition has been observed in young traumatic brain injury (TBI) patients, leading to the hypothesis that elevated extracellular Aβ levels could underlie the increased risk of dementia following TBI. However, a recent microdialysis-based study in human brain injury patients found that extracellular Aβ dynamics correlate with changes in neurological status. Because neurological status is generally diminished following injury, this correlation suggested the alternative hypothesis that soluble extracellular Aβ levels may instead be reduced after TBI relative to baseline. We have developed a methodologically novel mouse model that combines experimental controlled cortical impact TBI with intracerebral microdialysis. In this model, we found that Aβ levels in microdialysates were immediately decreased by 25-50% in the ipsilateral hippocampus following TBI. This result was found in PDAPP, Tg2576, and Tg2576-ApoE2 transgenic mice producing human Aβ plus wild-type animals. Changes were not due to altered probe function, edema, changes in APP levels, or Aβ deposition. Similar decreases in Aβ were observed in phosphate buffered saline-soluble tissue extracts. Hippocampal electroencephalographic activity was also decreased up to 40% following TBI, and correlated with reduced microdialysate Aβ levels. These results support the alternative hypothesis that post-injury extracellular soluble Aβ levels are acutely decreased relative to baseline. Reduced neuronal activity may contribute, though the underlying mechanisms have not been definitively determined. Further work will be needed to assess the dynamics of insoluble and oligomeric Aβ after TBI.


Journal of Neuropathology and Experimental Neurology | 2013

Human Apolipoprotein E4 Worsens Acute Axonal Pathology but Not Amyloid-β Immunoreactivity After Traumatic Brain Injury in 3×TG-AD Mice

Rachel E. Bennett; Thomas J. Esparza; Hal Lewis; Eddie Kim; Christine L. Mac Donald; Patrick M. Sullivan; David L. Brody

Apolipoprotein E4 (APOE4) genotype is a risk factor for poor outcome after traumatic brain injury (TBI), particularly in young patients, but the underlying mechanisms are not known. By analogy to effects of APOE4 on the risk of Alzheimer disease (AD), the APOE genotype may influence β-amyloid (Aβ) and tau deposition after TBI. To test this hypothesis, we crossed 3xTG-AD transgenic mice carrying 3 human familial AD mutations (PS1(M146V), tauP(301)L, and APP(SWE)) to human ApoE2-, ApoE3-, and ApoE4-targeted replacement mice. Six- to 8-month-old 3xTG-ApoE mice were assayed by quantitative immunohistochemistry for amyloid precursor protein (APP), Aβ(1-40) (Aβ40), Aβ(1-42) (Aβ42), total human tau, and phospho-serine 199 (pS199) tau at 24 hours after moderate controlled cortical impact. There were increased numbers of APP-immunoreactive axonal varicosities in 3xTG-ApoE4 mice versus the other genotypes. This finding was repeated in a separate cohort of ApoE4-targeted replacement mice without human transgenes compared with ApoE3 and ApoE2 mice. There were no differences between genotypes in the extent of intra-axonal Aβ40 and Aβ42; none of the mice had extracellular Aβ deposition. Regardless of injury status, 3xTG-ApoE4 mice had more total human tau accumulation in both somatodendritic and intra-axonal compartments than other genotypes. These results suggest that the APOE4 genotype may have a primary effect on the severity of axonal injury in acute TBI.


Brain | 2015

Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI

Sandra Magnoni; Christine L. Mac Donald; Thomas J. Esparza; Valeria Conte; James Sorrell; Mario Macrì; Giulio Bertani; Riccardo Biffi; Antonella Costa; Brian Sammons; Abraham Z. Snyder; Joshua S. Shimony; Fabio Triulzi; Nino Stocchetti; David L. Brody

Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearmans r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.


Journal of Immunology | 2007

Activation of Type B T Cells after Protein Immunization Reveals Novel Pathways of In Vivo Presentation of Peptides

Scott B. Lovitch; Thomas J. Esparza; George G. Schweitzer; Jeremy Herzog; Emil R. Unanue

Type B T cells recognize a peptide-MHC conformer generated in recycling endosomes and eliminated by H2-DM in late endosomes; as a result, they recognize exogenous peptide, but fail to respond to the identical epitope generated from the native protein. To investigate the behavior of these cells in vivo, we generated mice transgenic for a type B TCR recognizing the 48-62 epitope of hen egg white lysozyme (HEL) presented by I-Ak. Type B T cells responded only to peptide ex vivo, but responded in vivo to immunization with either protein or peptide in the presence of Freund’s adjuvant or LPS. Presentation of the type B conformer was MyD88-independent, evident within 24 h after HEL immunization, and restricted to the CD11b/c+ APC subset. Immunization with listeriolysin O, a potent inducer of cell death, also primed type B T cells in vivo, and transfer of HEL-bearing allogeneic dendritic cells activated type B T cells. We conclude that a number of conditions in vivo, some of which induce inflammation and cell death, lead to peptide presentation through mechanisms distinct from the classical pathways involving H-2DM molecules.


Scientific Reports | 2016

Soluble Amyloid-beta Aggregates from Human Alzheimer’s Disease Brains

Thomas J. Esparza; Norelle C. Wildburger; Hao Jiang; Mihika Gangolli; Nigel J. Cairns; Randall J. Bateman; David L. Brody

Soluble amyloid-beta (Aβ) aggregates likely contribute substantially to the dementia that characterizes Alzheimer’s disease. However, despite intensive study of in vitro preparations and animal models, little is known about the characteristics of soluble Aβ aggregates in the human Alzheimer’s disease brain. Here we present a new method for extracting soluble Aβ aggregates from human brains, separating them from insoluble aggregates and Aβ monomers using differential ultracentrifugation, and purifying them >6000 fold by dual antibody immunoprecipitation. The method resulted in <40% loss of starting material, no detectible ex vivo aggregation of monomeric Aβ, and no apparent ex vivo alterations in soluble aggregate sizes. By immunoelectron microscopy, soluble Aβ aggregates typically appear as clusters of 10–20 nanometer diameter ovoid structures with 2-3 amino-terminal Aβ antibody binding sites, distinct from previously characterized structures. This approach may facilitate investigation into the characteristics of native soluble Aβ aggregates, and deepen our understanding of Alzheimer’s dementia.

Collaboration


Dive into the Thomas J. Esparza's collaboration.

Top Co-Authors

Avatar

David L. Brody

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David M. Holtzman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Randall J. Bateman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nigel J. Cairns

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nino Stocchetti

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Norelle C. Wildburger

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Sandra Magnoni

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Hao Jiang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael L. Spinner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mihika Gangolli

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge