Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Giordano is active.

Publication


Featured researches published by Thomas J. Giordano.


Nature | 2008

Somatic mutations affect key pathways in lung adenocarcinoma

Li Ding; Gad Getz; David A. Wheeler; Elaine R. Mardis; Michael D. McLellan; Kristian Cibulskis; Carrie Sougnez; Heidi Greulich; Donna M. Muzny; Margaret Morgan; Lucinda Fulton; Robert S. Fulton; Qunyuan Zhang; Michael C. Wendl; Michael S. Lawrence; David E. Larson; Ken Chen; David J. Dooling; Aniko Sabo; Alicia Hawes; Hua Shen; Shalini N. Jhangiani; Lora Lewis; Otis Hall; Yiming Zhu; Tittu Mathew; Yanru Ren; Jiqiang Yao; Steven E. Scherer; Kerstin Clerc

Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.


Nature | 2007

Characterizing the cancer genome in lung adenocarcinoma

Barbara A. Weir; Michele S. Woo; Gad Getz; Sven Perner; Li Ding; Rameen Beroukhim; William M. Lin; Michael A. Province; Aldi T. Kraja; Laura A. Johnson; Kinjal Shah; Mitsuo Sato; Roman K. Thomas; Justine A. Barletta; Ingrid B. Borecki; Stephen Broderick; Andrew C. Chang; Derek Y. Chiang; Lucian R. Chirieac; Jeonghee Cho; Yoshitaka Fujii; Adi F. Gazdar; Thomas J. Giordano; Heidi Greulich; Megan Hanna; Bruce E. Johnson; Mark G. Kris; Alex E. Lash; Ling Lin; Neal I. Lindeman

Somatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ∼12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.


Current Biology | 2007

p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes

Guido T. Bommer; Isabelle Gerin; Ying Feng; Andrew Kaczorowski; Rork Kuick; Robert E. Love; Yali Zhai; Thomas J. Giordano; Zhaohui S. Qin; Bethany B. Moore; Ormond A. MacDougald; Kathleen R. Cho; Eric R. Fearon

BACKGROUND In response to varied cell stress signals, the p53 tumor-suppressor protein activates a multitude of genes encoding proteins with functions in cell-cycle control, DNA repair, senescence, and apoptosis. The role of p53 in transcription of other types of RNAs, such as microRNAs (miRNAs) is essentially unknown. RESULTS Using gene-expression analyses, reporter gene assays, and chromatin-immunoprecipitation approaches, we present definitive evidence that the abundance of the three-member miRNA34 family is directly regulated by p53 in cell lines and tissues. Using array-based approaches and algorithm predictions, we define genes likely to be directly regulated by miRNA34, with cell-cycle regulatory genes being the most prominent class. In addition, we provide functional evidence, obtained via antisense oligonucleotide transfection and the use of mouse embryonic stem cells with loss of miRNA34a function, that the BCL2 protein is regulated directly by miRNA34. Finally, we demonstrate that the expression of two miRNA34s is dramatically reduced in 6 of 14 (43%) non-small cell lung cancers (NSCLCs) and that the restoration of miRNA34 expression inhibits growth of NSCLC cells. CONCLUSIONS Taken together, the data suggest the miRNA34s might be key effectors of p53 tumor-suppressor function, and their inactivation might contribute to certain cancers.


Molecular & Cellular Proteomics | 2002

Discordant Protein and mRNA Expression in Lung Adenocarcinomas

Guoan Chen; Tarek G. Gharib; Chiang Ching Huang; Jeremy M. G. Taylor; David E. Misek; Sharon L.R. Kardia; Thomas J. Giordano; Mark D. Iannettoni; Mark B. Orringer; Samir M. Hanash; David G. Beer

The relationship between gene expression measured at the mRNA level and the corresponding protein level is not well characterized in human cancer. In this study, we compared mRNA and protein expression for a cohort of genes in the same lung adenocarcinomas. The abundance of 165 protein spots representing 98 individual genes was analyzed in 76 lung adenocarcinomas and nine non-neoplastic lung tissues using two-dimensional polyacrylamide gel electrophoresis. Specific polypeptides were identified using matrix-assisted laser desorption/ionization mass spectrometry. For the same 85 samples, mRNA levels were determined using oligonucleotide microarrays, allowing a comparative analysis of mRNA and protein expression among the 165 protein spots. Twenty-eight of the 165 protein spots (17%) or 21 of 98 genes (21.4%) had a statistically significant correlation between protein and mRNA expression (r > 0.2445; p < 0.05); however, among all 165 proteins the correlation coefficient values (r) ranged from −0.467 to 0.442. Correlation coefficient values were not related to protein abundance. Further, no significant correlation between mRNA and protein expression was found (r = −0.025) if the average levels of mRNA or protein among all samples were applied across the 165 protein spots (98 genes). The mRNA/protein correlation coefficient also varied among proteins with multiple isoforms, indicating potentially separate isoform-specific mechanisms for the regulation of protein abundance. Among the 21 genes with a significant correlation between mRNA and protein, five genes differed significantly between stage I and stage III lung adenocarcinomas. Using a quantitative analysis of mRNA and protein expression within the same lung adenocarcinomas, we showed that only a subset of the proteins exhibited a significant correlation with mRNA abundance.


Nature Medicine | 2008

Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study

Kerby Shedden; Jeremy M. G. Taylor; Steven A. Enkemann; Ming-Sound Tsao; Timothy J. Yeatman; William L. Gerald; Steven Eschrich; Igor Jurisica; Thomas J. Giordano; David E. Misek; Andrew C. Chang; Chang Qi Zhu; Daniel Strumpf; Samir M. Hanash; Frances A. Shepherd; Keyue Ding; Lesley Seymour; Katsuhiko Naoki; Nathan A. Pennell; Barbara A. Weir; Roel G.W. Verhaak; Christine Ladd-Acosta; Todd R. Golub; Michael Gruidl; Anupama Sharma; Janos Szoke; Maureen F. Zakowski; Valerie W. Rusch; Mark G. Kris; Agnes Viale

Although prognostic gene expression signatures for survival in early-stage lung cancer have been proposed, for clinical application, it is critical to establish their performance across different subject populations and in different laboratories. Here we report a large, training–testing, multi-site, blinded validation study to characterize the performance of several prognostic models based on gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether microarray measurements of gene expression either alone or combined with basic clinical covariates (stage, age, sex) could be used to predict overall survival in lung cancer subjects. Several models examined produced risk scores that substantially correlated with actual subject outcome. Most methods performed better with clinical data, supporting the combined use of clinical and molecular information when building prognostic models for early-stage lung cancer. This study also provides the largest available set of microarray data with extensive pathological and clinical annotation for lung adenocarcinomas.


Nature Genetics | 2009

SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas

Adam J. Bass; Hideo Watanabe; Craig H. Mermel; Yu Ss; Sven Perner; Roeland Verhaak; So Young Kim; Leslie Wardwell; Pablo Tamayo; Irit Gat-Viks; Alex H. Ramos; Michele S. Woo; Barbara A. Weir; Gad Getz; Rameen Beroukhim; Michael O'Kelly; Amit Dutt; Orit Rozenblatt-Rosen; Piotr Dziunycz; Justin Komisarof; Lucian R. Chirieac; Christopher J. Lafargue; Veit Scheble; Theresia Wilbertz; Changqing Ma; Shilpa Rao; Hiroshi Nakagawa; Douglas B. Stairs; Lin Lin; Thomas J. Giordano

Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development. Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations, is necessary for normal esophageal squamous development, promotes differentiation and proliferation of basal tracheal cells and cooperates in induction of pluripotent stem cells. SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.


The American Journal of Surgical Pathology | 2006

Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas.

Adebowale J. Adeniran; Zhaowen Zhu; Manoj Gandhi; David L. Steward; James P. Fidler; Thomas J. Giordano; Paul W. Biddinger; Yuri E. Nikiforov

Papillary carcinoma is the most common type of thyroid malignancy. It has been recently shown that these tumors commonly have one of three genetic alterations: BRAF point mutations, RET/PTC rearrangements, or RAS point mutations. In this study, we analyze the relationship between these alterations and the microscopic features of papillary carcinomas, their clinical features, and prognostic characteristics. Ninety-seven papillary carcinomas were studied; in all cases, frozen tissue was available for nucleic acid extraction. Of 96 unselected cases, 42% were positive for BRAF, 18% for RET/PTC, and 15% for RAS mutations. Morphologic features were evaluated in detail in 61 cases and 6 characteristic nuclear features and 3 additional microscopic features were assessed quantitatively. At least 4 nuclear features were found in each tumor, with nuclear pseudoinclusions being the least frequent finding in all mutation groups. BRAF mutations were associated with older patient age, typical papillary appearance or the tall cell variant, a higher rate of extrathyroidal extension, and more advanced tumor stage at presentation. RET/PTC rearrangements presented at younger age and had predominantly typical papillary histology, frequent psammoma bodies, and a high rate of lymph node metastases. Tumors with RAS mutations were exclusively the follicular variant of papillary carcinoma and correlated with significantly less prominent nuclear features and low rate of lymph node metastases. These findings demonstrate that BRAF, RET/PTC, and RAS mutations are associated with distinct microscopic, clinical, and biologic features of thyroid papillary carcinomas.


American Journal of Pathology | 2003

Distinct Transcriptional Profiles of Adrenocortical Tumors Uncovered by DNA Microarray Analysis

Thomas J. Giordano; Dafydd G. Thomas; Rork Kuick; Michelle Lizyness; David E. Misek; Angela L. Smith; Donita Sanders; Rima T. Aljundi; Paul G. Gauger; Norman W. Thompson; Jeremy M. G. Taylor; Samir M. Hanash

Comprehensive expression profiling of tumors using DNA microarrays has been used recently for molecular classification and biomarker discovery, as well as a tool to identify and investigate genes involved in tumorigenesis. Application of this approach to a cohort of benign and malignant adrenocortical tissues would be potentially informative in all of these aspects. In this study, we generated transcriptional profiles of 11 adrenocortical carcinomas (ACCs), 4 adrenocortical adenomas (ACAs), 3 normal adrenal cortices (NCs), and 1 macronodular hyperplasia (MNH) using Affymetrix HG_U95Av2 oligonucleotide arrays representing approximately 10,500 unique genes. The expression data set was used for unsupervised hierarchical cluster analysis as well as principal component analysis to visually represent the expression data. An analysis of variance on the three classes (NC, ACA plus MNH, and ACC) revealed 91 genes that displayed at least threefold differential expression between the ACC cohort and both the NC and ACA cohorts at a significance level of P < 0.01. Included in these 91 genes were those known to be up-regulated in adrenocortical tumors, such as insulin-like growth factor (IGF2), as well as novel differentially expressed genes such as osteopontin (SPP) and serine threonine kinase 15 (STK15). Increased expression of IGF2 was identified in 10 of 11 ACCs (90.9%) and was verified by quantitative reverse transcriptase-polymerase chain reaction. Select proliferation-related genes (TOP2A and Ki-67) were validated at the protein level using immunohistochemistry and adrenocortical tissue microarrays. Our results demonstrated significant and consistent gene expression changes in ACCs compared to benign adrenocortical lesions. Moreover, we identified several genes that represent potential diagnostic markers and may play a role in the pathogenesis of ACC.


Proceedings of the National Academy of Sciences of the United States of America | 2001

An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer

Franck Brichory; David E. Misek; Anne Marie Yim; Melissa Krause; Thomas J. Giordano; David G. Beer; Samir M. Hanash

The identification of circulating tumor antigens or their related autoantibodies provides a means for early cancer diagnosis as well as leads for therapy. The purpose of this study was to identify proteins that commonly induce a humoral response in lung cancer by using a proteomic approach and to investigate biological processes that may be associated with the development of autoantibodies. Aliquots of solubilized proteins from a lung adenocarcinoma cell line (A549) and from lung tumors were subjected to two-dimensional PAGE, followed by Western blot analysis in which individual sera were tested for primary antibodies. Sera from 54 newly diagnosed patients with lung cancer and 60 patients with other cancers and from 61 noncancer controls were analyzed. Sera from 60% of patients with lung adenocarcinoma and 33% of patients with squamous cell lung carcinoma but none of the noncancer controls exhibited IgG-based reactivity against proteins identified as glycosylated annexins I and/or II. Immunohistochemical analysis showed that annexin I was expressed diffusely in neoplastic cells in lung tumor tissues, whereas annexin II was predominant at the cell surface. Interestingly, IL-6 levels were significantly higher in sera of antibody-positive lung cancer patients compared with antibody-negative patients and controls. We conclude that an immune response manifested by annexins I and II autoantibodies occurs commonly in lung cancer and is associated with high circulating levels of an inflammatory cytokine. The proteomic approach we have implemented has utility for the development of serum-based assays for cancer diagnosis as we report in this paper on the discovery of antiannexins I and/or II in sera from patients with lung cancer.


Oncogene | 2005

Molecular classification of papillary thyroid carcinoma: distinct BRAF , RAS , and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis

Thomas J. Giordano; Rork Kuick; Dafydd G. Thomas; David E. Misek; Michelle Vinco; Donita Sanders; Zhaowen Zhu; Raffaele Ciampi; Michael Roh; Kerby Shedden; Paul G. Gauger; Gerard M. Doherty; Norman W. Thompson; Samir M. Hanash; Ronald J. Koenig; Yuri E. Nikiforov

Thyroid cancer poses a significant clinical challenge, and our understanding of its pathogenesis is incomplete. To gain insight into the pathogenesis of papillary thyroid carcinoma, transcriptional profiles of four normal thyroids and 51 papillary carcinomas (PCs) were generated using DNA microarrays. The tumors were genotyped for their common activating mutations: BRAF V600E point mutation, RET/PTC1 and 3 rearrangement and point mutations of KRAS, HRAS and NRAS. Principal component analysis based on the entire expression data set separated the PCs into three groups that were found to reflect tumor morphology and mutational status. By combining expression profiles with mutational status, we defined distinct expression profiles for the BRAF, RET/PTC and RAS mutation groups. Using small numbers of genes, a simple classifier was able to classify correctly the mutational status of all 40 tumors with known mutations. One tumor without a detectable mutation was predicted by the classifier to have a RET/PTC rearrangement and was shown to contain one by fluorescence in situ hybridization analysis. Among the mutation-specific expression signatures were genes whose differential expression was a direct consequence of the mutation, as well as genes involved in a variety of biological processes including immune response and signal transduction. Expression of one mutation-specific differentially expressed gene, TPO, was validated at the protein level using immunohistochemistry and tissue arrays containing an independent set of tumors. The results demonstrate that mutational status is the primary determinant of gene expression variation within these tumors, a finding that may have clinical and diagnostic significance and predicts success for therapies designed to prevent the consequences of these mutations.

Collaboration


Dive into the Thomas J. Giordano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rork Kuick

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guoan Chen

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge