Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Lisney is active.

Publication


Featured researches published by Thomas J. Lisney.


Brain Behavior and Evolution | 2007

Variation in brain organization and cerebellar foliation in chondrichthyans: Sharks and holocephalans

Kara E. Yopak; Thomas J. Lisney; Shaun P. Collin; John C. Montgomery

The widespread variation in brain size and complexity that is evident in sharks and holocephalans is related to both phylogeny and ecology. Relative brain size (expressed as encephalization quotients) and the relative development of the five major brain areas (the telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) was assessed for over 40 species from 20 families that represent a range of different lifestyles and occupy a number of habitats. In addition, an index (1–5) quantifying structural complexity of the cerebellum was created based on length, number, and depth of folds. Although the variation in brain size, morphology, and complexity is due in part to phylogeny, as basal groups have smaller brains, less structural hypertrophy, and lower foliation indices, there is also substantial variation within and across clades that does not reflect phylogenetic relationships. Ecological correlations, with the relative development of different brain areas as well as the complexity of the cerebellar corpus, are supported by cluster analysis and are suggestive of a range of ‘cerebrotypes’. These correlations suggest that relative brain development reflects the dimensionality of the environment and/or agile prey capture in addition to phylogeny.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A conserved pattern of brain scaling from sharks to primates

Kara E. Yopak; Thomas J. Lisney; Richard B. Darlington; Shaun P. Collin; John C. Montgomery; Barbara L. Finlay

Several patterns of brain allometry previously observed in mammals have been found to hold for sharks and related taxa (chondrichthyans) as well. In each clade, the relative size of brain parts, with the notable exception of the olfactory bulbs, is highly predictable from the total brain size. Compared with total brain mass, each part scales with a characteristic slope, which is highest for the telencephalon and cerebellum. In addition, cerebellar foliation reflects both absolute and relative cerebellar size, in a manner analogous to mammalian cortical gyrification. This conserved pattern of brain scaling suggests that the fundamental brain plan that evolved in early vertebrates permits appropriate scaling in response to a range of factors, including phylogeny and ecology, where neural mass may be added and subtracted without compromising basic function.


The Journal of Experimental Biology | 2006

Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity

Nathan S. Hart; Thomas J. Lisney; Shaun P. Collin

SUMMARY The cone photoreceptors of many vertebrates contain spherical organelles called oil droplets. In birds, turtles, lizards and some lungfish the oil droplets are heavily pigmented and function to filter the spectrum of light incident upon the visual pigment within the outer segment. Pigmented oil droplets are beneficial for colour discrimination in bright light, but at lower light levels the reduction in sensitivity caused by the pigmentation increasingly outweighs the benefits generated by spectral tuning. Consequently, it is expected that species with pigmented oil droplets should modulate the density of pigment in response to ambient light intensity and thereby regulate the amount of light transmitted to the outer segment. In this study, microspectrophotometry was used to measure the absorption spectra of cone oil droplets in chickens (Gallus gallus domesticus) reared under bright (unfiltered) or dim (filtered) sunlight. Oil droplet pigmentation was found to be dependent on the intensity of the ambient light and the duration of exposure to the different lighting treatments. In adult chickens reared in bright light, the oil droplets of all cone types (except the violet-sensitive single cones, whose oil droplet is always non-pigmented) were more densely pigmented than those in chickens reared in dim light. Calculations show that the reduced levels of oil droplet pigmentation in chickens reared in dim light would increase the sensitivity and spectral bandwidth of the outer segment significantly. The density of pigmentation in the oil droplets presumably represents a trade-off between the need for good colour discrimination and absolute sensitivity. This might also explain why nocturnal animals, or those that underwent a nocturnal phase during their evolution, have evolved oil droplets with low pigment densities or no pigmentation or have lost their oil droplets altogether.


The Journal of Experimental Biology | 2004

Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch

Nathan S. Hart; Thomas J. Lisney; N. Justin Marshall; Shaun P. Collin

SUMMARY Elasmobranchs (sharks, skates and rays) are the modern descendents of the first jawed vertebrates and, as apex predators, often occupy the highest trophic levels of aquatic (predominantly marine) ecosystems. However, despite their crucial role in the structure of marine communities, their importance both to commercial and to recreational fisheries, and the inherent interest in their role in vertebrate evolution, very little is known about their visual capabilities, especially with regard to whether or not they have the potential for colour vision. Using microspectrophotometry, we show that the retinae of the giant shovelnose ray (Rhinobatos typus) and the eastern shovelnose ray (Aptychotrema rostrata) contain three spectrally distinct cone visual pigments with wavelengths of maximum absorbance (λmax) at 477, 502 and 561 nm and at 459, 492 and 553 nm, respectively. The retinae of R. typus and A. rostrata also contain a single type of rod visual pigment with λmax at 504 and 498 nm, respectively. R. typus, living in the same estuarine waters as A. rostrata, were found to have identical visual pigments to R. typus inhabiting coral reef flats, despite a considerable difference in habitat spectral radiance. This is the first time that multiple cone visual pigments have been measured directly in an elasmobranch. The finding raises the possibility that some species are able to discriminate colour – a visual ability traditionally thought to be lacking in this vertebrate class – and it is evident that the visual ecology of elasmobranchs is far more complex than once thought.


Brain Behavior and Evolution | 2007

Relative Eye Size in Elasmobranchs

Thomas J. Lisney; Shaun P. Collin

Variation in relative eye size was investigated in a sample of 46 species of elasmobranch, 32 species of sharks and 14 species of batoids (skates and rays). To get a measure of eye size relative to body size, eye axial diameter was scaled with body mass using least-squares linear regression, using both raw species data, where species are treated as independent data points, and phylogenetically independent contrasts. Residual values calculated for each species, using the regression equations describing these scaling relationships, were then used as a measure of relative eye size. Relative and absolute eye size varies considerably in elasmobranchs, although sharks have significantly relatively larger eyes than batoids. The sharks with the relatively largest eyes are oceanic species; either pelagic sharks that move between the epipelagic (0–200 m) and ‘upper’ mesopelagic (200–600 m) zones, or benthic and benthopelagic species that live in the mesopelagic (200–1,000 m) and, to a lesser extent, bathypelagic (1,000–4,000 m) zones. The elasmobranchs with the relatively smallest eyes tend to be coastal, often benthic, batoids and sharks. Active benthopelagic and pelagic species, which prey on active, mobile prey also have relatively larger eyes than more sluggish, benthic elasmobranchs that feed on more sedentary prey such as benthic invertebrates. A significant positive correlation was found between absolute eye size and relative eye size, but some very large sharks, such as Carcharodon carcharias have absolutely large eyes, but have relatively small eyes in relation to body mass.


Brain Behavior and Evolution | 2008

Retinal ganglion cell distribution and spatial resolving power in Elasmobranchs

Thomas J. Lisney; Shaun P. Collin

The total number, distribution and peak density of presumed retinal ganglion cells was assessed in 10 species of elasmobranch (nine species of shark and one species of batoid) using counts of Nissl-stained cells in retinal wholemounts. The species sampled include a number of active, predatory benthopelagic and pelagic sharks that are found in a variety of coastal and oceanic habitats and represent elasmobranch groups for which information of this nature is currently lacking. The topographic distribution of cells was heterogeneous in all species. Two benthic species, the shark Chiloscyllium punctatum and the batoid Taeniura lymma, have a dorsal or dorso-central horizontal streak of increased cell density, whereas the majority of the benthopelagic and pelagic sharks examined exhibit a more concentric pattern of increasing cell density, culminating in a central area centralis of higher cell density located close to the optic nerve head. The exception is the shark Alopias superciliosus, which possesses a ventral horizontal streak. Variation in retinal ganglion cell topography appears to be related to the visual demands of different habitats and lifestyles, as well as the positioning of the eyes in the head. The upper limits of spatial resolving power were calculated for all 10 species, using peak ganglion cell densities and estimates of focal length taken from cryo-sectioned eyes in combination with information from the literature. Spatial resolving power ranged from 2.02 to 10.56 cycles deg–1, which is in accordance with previous studies. Species with a lower spatial resolving power tend to be benthic and/or coastal species that feed on benthic invertebrates and fishes. Active, benthopelagic and pelagic species from more oceanic habitats which feed on larger, more active prey, possess a higher resolving power. Additionally, ganglion cells in a juvenile of C. punctatum, were retrogradely-labeled from the optic nerve with biotinylated dextran amine (BDA). A comparison of the BDA- labeled material and tissue stained for Nissl substance indicates that 76% of the cells in the retinal ganglion cell and inner plexiform layers of the central retina in this species are non-ganglion cells.


Brain Behavior and Evolution | 2008

Variation in brain organization and cerebellar foliation in chondrichthyans: batoids.

Thomas J. Lisney; Kara E. Yopak; John C. Montgomery; Shaun P. Collin

Interspecific variation in relative brain size (encephalization), the relative size of the five major brain areas (the telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) and the level of cerebellar foliation was assessed in over 20 representative species of batoid (skates and rays), from eight families. Using species as independent data points and phylogenetically independent contrasts, relationships among each of the neuroanatomical variables and two ecological variables, habitat and lifestyle, were assessed. Variation in relative brain size and brain organization appears to be strongly correlated with phylogeny. Members of the basal orders Rajiformes and Torpediniformes tend to have relatively small brains, with relatively small telencephalons, large medullas, and smooth, unfoliated cerebellums. More advanced Myliobatiformes possess relatively large brains, with relatively large telencephalons, small medullas, and complex, heavily foliated cerebellums. Increased brain size, telencephalon size, and cerebellar foliation also correlate with living in a complex habitat (such as in association with coral reefs) and an active, benthopelagic lifestyle, but as primary habitat and lifestyle also closely match phylogenetic relationships in batoids, it is difficult to separate the influence of phylogeny and ecological factors on brain organization in these animals. However, the results of two forms of multivariate analysis (principal component analysis and cluster analysis) reveal that certain species are clustered with others that share ecological traits, rather than with more closely related species from the same order. This suggests that ecological factors do play a role in defining patterns of brain organization and there is some evidence for ‘cerebrotypes’ in batoids.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2013

Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes

Thomas J. Lisney; Karyn Stecyk; Jeffrey Kolominsky; Brian K. Schmidt; Jeremy R. Corfield; Andrew N. Iwaniuk; Douglas R. Wylie

Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the ‘openness’ of their habitats.


Journal of Fish Biology | 2012

Vision in elasmobranchs and their relatives : 21st century advances

Thomas J. Lisney; Susan M. Theiss; Shaun P. Collin; Nathan S. Hart

This review identifies a number of exciting new developments in the understanding of vision in cartilaginous fishes that have been made since the turn of the century. These include the results of studies on various aspects of the visual system including eye size, visual fields, eye design and the optical system, retinal topography and spatial resolving power, visual pigments, spectral sensitivity and the potential for colour vision. A number of these studies have covered a broad range of species, thereby providing valuable information on how the visual systems of these fishes are adapted to different environmental conditions. For example, oceanic and deep-sea sharks have the largest eyes amongst elasmobranchs and presumably rely more heavily on vision than coastal and benthic species, while interspecific variation in the ratio of rod and cone photoreceptors, the topographic distribution of the photoreceptors and retinal ganglion cells in the retina and the spatial resolving power of the eye all appear to be closely related to differences in habitat and lifestyle. Multiple, spectrally distinct cone photoreceptor visual pigments have been found in some batoid species, raising the possibility that at least some elasmobranchs are capable of seeing colour, and there is some evidence that multiple cone visual pigments may also be present in holocephalans. In contrast, sharks appear to have only one cone visual pigment. There is evidence that ontogenetic changes in the visual system, such as changes in the spectral transmission properties of the lens, lens shape, focal ratio, visual pigments and spatial resolving power, allow elasmobranchs to adapt to environmental changes imposed by habitat shifts and niche expansion. There are, however, many aspects of vision in these fishes that are not well understood, particularly in the holocephalans. Therefore, this review also serves to highlight and stimulate new research in areas that still require significant attention.


Brain Behavior and Evolution | 2012

Eye Shape and Retinal Topography in Owls (Aves: Strigiformes)

Thomas J. Lisney; Andrew N. Iwaniuk; Mischa V. Bandet; Douglas R. Wylie

The eyes of vertebrates show adaptations to the visual environments in which they evolve. For example, eye shape is associated with activity pattern, while retinal topography is related to the symmetry or ‘openness’ of the habitat of a species. Although these relationships are well documented in many vertebrates including birds, the extent to which they hold true for species within the same avian order is not well understood. Owls (Strigiformes) represent an ideal group for the study of interspecific variation in the avian visual system because they are one of very few avian orders to contain species that vary in both activity pattern and habitat preference. Here, we examined interspecific variation in eye shape and retinal topography in nine species of owl. Eye shape (the ratio of corneal diameter to eye axial length) differed among species, with nocturnal species having relatively larger corneal diameters than diurnal species. All the owl species have an area of high retinal ganglion cell (RGC) density in the temporal retina and a visual streak of increased cell density extending across the central retina from temporal to nasal. However, the organization and degree of elongation of the visual streak varied considerably among species and this variation was quantified using H:V ratios. Species that live in open habitats and/or that are more diurnally active have well-defined, elongated visual streaks and high H:V ratios (3.88–2.33). In contrast, most nocturnal and/or forest-dwelling owls have a poorly defined visual streak, a more radially symmetrical arrangement of RGCs and lower H:V ratios (1.77–1.27). The results of a hierarchical cluster analysis indicate that the apparent interspecific variation is associated with activity pattern and habitat as opposed to the phylogenetic relationships among species. In seven species, the presence of a fovea was confirmed and it is suggested that all strigid owls may possess a fovea, whereas the tytonid barn owl (Tyto alba) does not. A size-frequency analysis of cell soma area indicates that a number of different RGC classes are represented in owls, including a population of large RGCs (cell soma area >150 µm2) that resemble the giant RGCs reported in other vertebrates. In conclusion, eye shape and retinal topography in owls vary among species and this variation is associated with different activity patterns and habitat preferences, thereby supporting similar observations in other vertebrates.

Collaboration


Dive into the Thomas J. Lisney's collaboration.

Top Co-Authors

Avatar

Shaun P. Collin

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kara E. Yopak

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan S. Hart

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge