Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Magliery is active.

Publication


Featured researches published by Thomas J. Magliery.


Journal of Molecular Biology | 2001

Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli.

Thomas J. Magliery; J. Christopher Anderson; Peter G. Schultz

Abstract Naturally occurring tRNA mutants are known that suppress +1 frameshift mutations by means of an extended anticodon loop, and a few have been used in protein mutagenesis. In an effort to expand the number of possible ways to uniquely and efficiently encode unnatural amino acids, we have devised a general strategy to select tRNAs with the ability to suppress four-base codons from a library of tRNAs with randomized 8 or 9 nt anticodon loops. Our selectants included both known and novel suppressible four-base codons and resulted in a set of very efficient, non-cross-reactive tRNA/four-base codon pairs for AGGA, UAGA, CCCU and CUAG. The most efficient four-base codon suppressors had Watson-Crick complementary anticodons, and the sequences of the anticodon loops outside of the anticodons varied with the anticodon. Additionally, four-base codon reporter libraries were used to identify “shifty” sites at which +1 frameshifting is most favorable in the absence of suppressor tRNAs in Escherichia coli. We intend to use these tRNAs to explore the limits of unnatural polypeptide biosynthesis, both in vitro and eventually in vivo. In addition, this selection strategy is being extended to identify novel five- and six-base codon suppressors.


Journal of the American Chemical Society | 2009

High-Throughput Thermal Scanning: A General, Rapid Dye-Binding Thermal Shift Screen for Protein Engineering

Jason J. Lavinder; Sanjay B. Hari; Brandon J. Sullivan; Thomas J. Magliery

The low stability of natural proteins often limits their use in therapeutic, industrial, and research applications. The scale and throughput of methods such as circular dichroism, fluorescence spectroscopy, and calorimetry severely limit the number of variants that can be examined. Here we demonstrate a high-throughput thermal scanning (HTTS) method for determining the approximate stabilities of protein variants at high throughput and low cost. The method is based on binding to a hydrophobic dye akin to ANS, which fluoresces upon binding to molten globules and thermal denaturation intermediates. No inherent properties of the protein, such as enzymatic activity or presence of an intrinsic fluorophore, are required. Very small sample sizes are analyzed using a real-time PCR machine, enabling the use of high-throughput purification. We show that the apparent T(M) values obtained from HTTS are approximately linearly related to those from CD thermal denaturation for a series of four-helix bundle hydrophobic core variants. We demonstrate similar results for a small set of TIM barrel variants. This inexpensive, general, and scaleable approach enables the search for conservative, stable mutants of biotechnologically important proteins and provides a method for statistical correlation of sequence-stability relationships.


Chemistry & Biology | 2002

Exploring the Limits of Codon and Anticodon Size

J. Christopher Anderson; Thomas J. Magliery; Peter G. Schultz

We previously employed a combinatorial approach to identify the most efficient suppressors of four-base codons in E. coli. We have now examined the suppression of two-, three-, four-, five-, and six-base codons with tRNAs containing 6-10 nt in their anticodon loops. We found that the E. coli translational machinery tolerates codons of 3-5 bases and that tRNAs with 6-10 nt anticodon loops can suppress these codons. However, N-length codons were found to prefer N + 4-length anticodon loops. Additionally, sequence preferences, including the requirement of Watson-Crick complementarity to the codon, were evident in the loops. These selections have yielded efficient suppressors of four-base and five-base codons for our ongoing efforts to expand the genetic code. They also highlight some of the parameters that underlie the fidelity of frame maintenance.


Nature Methods | 2004

Detecting protein-protein interactions with GFP-fragment reassembly

Christopher Gm Wilson; Thomas J. Magliery; Lynne Regan

The detection of protein-protein interactions in vivo is of critical importance to our understanding of biological processes. The classic library approach has been to use the yeast two-hybrid screen, where an interaction between known bait and unknown prey proteins leads to restoration of transcription factor activity 1 . However, its use is limited by host organism and nuclear localization requirements, and a tendency to detect indirect interactions (false positives). Bacterial two-hybrid screens have eliminated localization requirements and simplified many technical aspects of the procedure 2 . An innovative approach has been the reassembly of protein fragments, which then directly report interactions. A suitable reporter protein is dissected at the genetic level, and the fragments are fused to bait and prey, which are then coexpressed in vivo. Bait and prey interaction brings the reporter fragments together, facilitating reassembly of the active reporter protein, giving a direct readout of the association. This method has been demonstrated for dihydrofolate reductase 3,4 , ubiquitin 5 and the green fluorescent protein6 (GFP) from Aequorea victoria. We recently described improvements to the original screen based on the reassembly of the GFP enhancedstability mutant sg100 in Escherichia coli 7 . Our system, presented in the protocol that follows, consists of two plasmid vectors for the independent expression of fusions with N- and C-terminal fragments of GFP, and allows for simple visual detection of protein-protein interactions with a K D as weak as 1 mM.


Helvetica Chimica Acta | 2000

A New Orthogonal Suppressor tRNA/Aminoacyl-tRNA Synthetase Pair for Evolving an Organism with an Expanded Genetic Code

Miro Pastrnak; Thomas J. Magliery; Peter G. Schultz

Several steps have been completed toward the development of a method for the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach consists of the generation of amber suppressor tRNA/aminoacyl-tRNA synthetase pairs that are orthogonal to all Escherichia coli endogenous tRNA/synthetase pairs, followed by directed evolution of the orthogonal aminoacyl-tRNA synthetases to alter their amino-acid specificities. A new orthogonal suppressor tRNA/aminoacyl-tRNA synthetase pair in E. coli has been derived from the Saccharomyces cerevisiae tRNAAsp and aspartyl-tRNA synthetase, and the in vitro and in vivo characteristics of this pair were determined. Two different antibiotic resistance selections were compared using this novel pair in an effort to develop a tunable positive selection for a mutant synthetase capable of charging its cognate suppressor tRNA with an unnatural amino acid.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Direct single-molecule observation of a protein living in two opposed native structures

Yann Gambin; Alexander Schug; Edward A. Lemke; Jason J. Lavinder; Allan Chris M. Ferreon; Thomas J. Magliery; José N. Onuchic; Ashok A. Deniz

Biological activity in proteins requires them to share the energy landscape for folding and global conformational motions, 2 key determinants of function. Although most structural studies to date have focused on fluctuations around a single structural basin, we directly observe the coexistence of 2 symmetrically opposed conformations for a mutant of the Rop-homodimer (Repressor of Primer) in single-molecule fluorescence resonance energy transfer (smFRET) measurements. We find that mild denaturing conditions can affect the sensitive balance between the conformations, generating an equilibrium ensemble consisting of 2 equally occupied structural basins. Despite the need for large-scale conformational rearrangement, both native structures are dynamically and reversibly adopted for the same paired molecules without separation of the constituent monomers. Such an ability of some proteins or protein complexes to switch between conformations by thermal fluctuations and/or minor environmental changes could be central to their ability to control biological function.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Somatic hypermutation maintains antibody thermodynamic stability during affinity maturation

Feng Wang; Shiladitya Sen; Yong Zhang; Insha Ahmad; Xueyong Zhu; Ian A. Wilson; Vaughn V. Smider; Thomas J. Magliery; Peter G. Schultz

Somatic hypermutation and clonal selection lead to B cells expressing high-affinity antibodies. Here we show that somatic mutations not only play a critical role in antigen binding, they also affect the thermodynamic stability of the antibody molecule. Somatic mutations directly involved in antigen recognition by antibody 93F3, which binds a relatively small hapten, reduce the melting temperature compared with its germ-line precursor by up to 9 °C. The destabilizing effects of these mutations are compensated by additional somatic mutations located on surface loops distal to the antigen binding site. Similarly, somatic mutations enhance both the affinity and thermodynamic stability of antibody OKT3, which binds the large protein antigen CD3. Analysis of the crystal structures of 93F3 and OKT3 indicates that these somatic mutations modulate antibody stability primarily through the interface of the heavy and light chain variable domains. The historical view of antibody maturation has been that somatic hypermutation and subsequent clonal selection increase antigen–antibody specificity and binding energy. Our results suggest that this process also optimizes protein stability, and that many peripheral mutations that were considered to be neutral are required to offset deleterious effects of mutations that increase affinity. Thus, the immunological evolution of antibodies recapitulates on a much shorter timescale the natural evolution of enzymes in which function and thermodynamic stability are simultaneously enhanced through mutation and selection.


Current Opinion in Chemical Biology | 2011

Protein stability by number: high-throughput and statistical approaches to one of protein science's most difficult problems.

Thomas J. Magliery; Jason J. Lavinder; Brandon J. Sullivan

Most proteins are only barely stable, which impedes research, complicates therapeutic applications, and makes proteins susceptible to pathologically destabilizing mutations. Our ability to predict the thermodynamic consequences of even single point mutations is still surprisingly limited, and established methods of measuring stability are slow. Recent advances are bringing protein stability studies into the high-throughput realm. Some methods are based on inferential read-outs such as activity, proteolytic resistance or split-protein fragment reassembly. Other methods use miniaturization of direct measurements, such as intrinsic fluorescence, H/D exchange, cysteine reactivity, aggregation and hydrophobic dye binding (DSF). Protein engineering based on statistical analysis (consensus and correlated occurrences of amino acids) is promising, but much work remains to understand and implement these methods.


Biochemistry | 2009

Dramatic Differences in Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes

Tamara C. Otto; Christina Keventzidis Harsch; David T. Yeung; Thomas J. Magliery; Douglas M. Cerasoli; David E. Lenz

Human serum paraoxonase-1 (HuPON1) has the capacity to hydrolyze aryl esters, lactones, oxidized phospholipids, and organophosphorus (OP) compounds. HuPON1 and bacterially expressed chimeric recombinant PON1s (G2E6 and G3C9) differ by multiple amino acids, none of which are in the putative enzyme active site. To address the importance of these amino acid differences, the abilities of HuPON1, G2E6, G3C9, and several variants to hydrolyze phenyl acetate, paraoxon, and V-type OP nerve agents were examined. HuPON1 and G2E6 have a 10-fold greater catalytic efficiency toward phenyl acetate than G3C9. In contrast, bacterial PON1s are better able to promote hydrolysis of paraoxon, whereas HuPON1 is considerably better at catalyzing the hydrolysis of nerve agents VX and VR. These studies demonstrate that mutations distant from the active site of PON1 have large and unpredictable effects on the substrate specificities and possibly the hydrolytic mechanisms of HuPON1, G2E6, and G3C9. The replacement of residue H115 in the putative active site with tryptophan (H115W) has highly disparate effects on HuPON1 and G2E6. In HuPON1, variant H115W loses the ability to hydrolyze VR but has improved activity toward paraoxon and VX. The H115W variant of G2E6 has paraoxonase activity similar to that of wild-type G2E6, modest activity with phenyl acetate and VR, and enhanced VX hydrolysis. VR inhibits H115W HuPON1 competitively when paraoxon is the substrate and noncompetitively when VX is the substrate. We have identified the first variant of HuPON1, H115W, that displays significantly enhanced catalytic activity against an authentic V-type nerve agent.


Current Opinion in Structural Biology | 2015

Protein stability: computation, sequence statistics, and new experimental methods

Thomas J. Magliery

Calculating protein stability and predicting stabilizing mutations remain exceedingly difficult tasks, largely due to the inadequacy of potential functions, the difficulty of modeling entropy and the unfolded state, and challenges of sampling, particularly of backbone conformations. Yet, computational design has produced some remarkably stable proteins in recent years, apparently owing to near ideality in structure and sequence features. With caveats, computational prediction of stability can be used to guide mutation, and mutations derived from consensus sequence analysis, especially improved by recent co-variation filters, are very likely to stabilize without sacrificing function. The combination of computational and statistical approaches with library approaches, including new technologies such as deep sequencing and high throughput stability measurements, point to a very exciting near term future for stability engineering, even with difficult computational issues remaining.

Collaboration


Dive into the Thomas J. Magliery's collaboration.

Top Co-Authors

Avatar

Peter G. Schultz

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Miro Pastrnak

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge