Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Preston is active.

Publication


Featured researches published by Thomas J. Preston.


Journal of Physical Chemistry A | 2008

Time-resolved studies of CN radical reactions and the role of complexes in solution.

Andrew C. Crowther; Thomas J. Preston; F. Fleming Crim

Time-resolved studies using 100 fs laser pulses generate CN radicals photolytically in solution and probe their subsequent reaction with solvent molecules by monitoring both radical loss and product formation. The experiments follow the CN reactants by transient electronic spectroscopy at 400 nm and monitor the HCN products by transient vibrational spectroscopy near 3.07 microm. The observation that CN disappears more slowly than HCN appears shows that the two processes are decoupled kinetically and suggests that the CN radicals rapidly form two different types of complexes that have different reactivities. Electronic structure calculations find two bound complexes between CN and a typical solvent molecule (CH(2)Cl(2)) that are consistent with this picture. The more weakly bound complex is linear with CN bound to an H atom through the N atom, and the more strongly bound complex has a structure in which the CN bridges Cl and H atoms of the solvent. Fitting the transient absorption data with a kinetic model containing two uncoupled complexes reproduces the data for seven different chlorinated alkane solvents and yields rate constants for the reaction of each type of complex. Depending on the solvent, the linear complex reacts between 2.5 and 12 times faster than the bridging complex and is the primary source of the HCN reaction product. Increasing the Cl atom content of the solvents decreases the reaction rate for both complexes.


Science | 2015

Vibrational relaxation and microsolvation of DF after F-atom reactions in polar solvents

Greg T. Dunning; David R. Glowacki; Thomas J. Preston; Stuart J. Greaves; Gregory M. Greetham; Ian P. Clark; Michael Towrie; Jeremy N. Harvey; Andrew J. Orr-Ewing

Deuterium fluoride gets born shivering Modern spectroscopic techniques can analyze collisions between gas phase molecules in exquisite detail, highlighting exactly which vibrations and rotations come into play. However, much chemistry of interest takes place in solution, where its harder to tease out what happens. Dunning et al. applied infrared spectroscopy to study solution-phase formation of deuterium fluoride (DF) from F atoms, a longstanding test bed of gas phase dynamics. The DF product vibrated for a surprisingly long time before dissipating its energy to the surrounding solvent molecules. Science, this issue p. 530 Infrared spectroscopy reveals the dynamics of vibrational energy flow from product to solvent in a bimolecular reaction. Solvent-solute interactions influence the mechanisms of chemical reactions in solution, but the response of the solvent is often slower than the reactive event. Here, we report that exothermic reactions of fluorine (F) atoms in d3-acetonitrile and d2-dichloromethane involve efficient energy flow to vibrational motion of the deuterium fluoride (DF) product that competes with dissipation of the energy to the solvent bath, despite strong solvent coupling. Transient infrared absorption spectroscopy and molecular dynamics simulations show that after DF forms its first hydrogen bond on a subpicosecond time scale, DF vibrational relaxation and further solvent restructuring occur over more than 10 picoseconds. Characteristic dynamics of gas-phase F-atom reactions with hydrogen-containing molecules persist in polar organic solvents, and the spectral evolution of the DF products serves as a probe of solvent reorganization induced by a chemical reaction.


Journal of Physical Chemistry A | 2009

Time-resolved studies of the reactions of CN radical complexes with alkanes, alcohols, and chloroalkanes.

Andrew C. Crowther; Thomas J. Preston; F. Fleming Crim

Ultrafast transient absorption experiments monitor the reaction of CN radicals with 16 different alkane, alcohol, and chloroalkane solutes in CH(2)Cl(2) and with a smaller number of representative solutes in CHCl(3) and CH(3)CCl(3). In these experiments, 267-nm photolysis generates CN radicals, and transient electronic absorption at 400 nm probes their time evolution. A crucial feature of the reactions of CN radicals is their rapid formation of two different types of complexes with the solvent that have different stabilities and reactivities. The signature of the formation of these complexes is the CN transient absorption disappearing more slowly than the infrared transient absorption of the HCN product appears. Studying both the growth of HCN and the decay of the CN-solvent complexes in the reaction of CN with pentane in CH(2)Cl(2) and CHCl(3) solutions provides the information needed to build a kinetic model that accounts for the reaction of both complexes. This model permits analysis of the reaction of each of the 16 different solutes using only the decay of the CN transient absorption. The reaction of CN-solvent complexes with alkanes and chloroalkanes is slower than the corresponding reactions of Cl. However, the reactions of alcohols with both CN and Cl occur at about the same rate, likely reflecting additional complexation of the CN radical or its ICN precursor by the alcohol. The rates for the reactions of CN with the chloroalkanes decrease with increasing Cl content of the solute, in keeping with previous observations for the reactions of Cl in both gases and liquids.


Journal of Physical Chemistry A | 2010

Ultrafast observation of isomerization and complexation in the photolysis of bromoform in solution.

Thomas J. Preston; Maitreya Dutta; Andrew C. Crowther; F. Fleming Crim

Ultrafast photolysis of bromoform (CHBr(3)) with a 267 nm pulse of light followed by broadband transient electronic absorption identifies the photoproducts and follows their evolution in both neat bromoform and cyclohexane solutions. In neat bromoform, a species absorbing at 390 nm appears promptly and decays with a time constant of 13 ps as another species absorbing at 495 nm appears. The wavelength and time evolution of the first absorption is consistent with the formation of iso-bromoform (CHBr(2)-Br) by recombination of the fragment radicals within the solvent cage. The presence of an isosbestic point in the transient spectra indicates that this isomer is the precursor of the second absorber. The excess internal energy remaining in iso-bromoform permits release of the weakly bound Br atom to form a complex, CHBr(3)-Br, with other bromoform molecules. The features in the transient spectra are qualitatively similar in cyclohexane solutions of bromoform. The wavelength of the transition of iso-bromoform does not change upon dilution, but that of the CHBr(3)-Br complex systematically decreases with addition of cyclohexane. This trend agrees with the predicted dependence of the energy of a charge-transfer transition on the dielectric constant of the medium. Vibrational relaxation is likely to be the controlling feature of the evolution of the initially formed iso-bromoform.


Journal of Physical Chemistry A | 2014

Direct and Indirect Hydrogen Abstraction in Cl + Alkene Reactions

Thomas J. Preston; Greg T. Dunning; Andrew J. Orr-Ewing; Saulo A. Vázquez

Reactions between Cl atoms and propene can lead to HCl formation either by direct H abstraction or through a chloropropyl addition complex. Barring stabilizing collisions, the chloropropyl radical will either decompose to reactants or form HCl and allyl products. Using velocity-map imaging to measure the quantum state and velocity of the HCl products provides a view into the reaction dynamics, which show signs of both direct and indirect reaction mechanisms. Simulated trajectories of the reaction highlight the role of the direct H-abstraction pathways, and the resultant simulated scattering images show reasonable agreement with measurement. The simulations also show the importance of large excursions of the Cl atom far from equilibrium geometries within the chloropropyl complex, and these large-amplitude motions are the ultimate drivers toward HCl + allyl fragmentation. Gas-phase measurements of larger alkenes, 2-methylpropene and 2,3-dimethylbut-2-ene, show slightly different product distributions but still feature similar reaction dynamics. The current suite of experiments offers ready extensions to liquid-phase bimolecular reactions.


Journal of Physical Chemistry A | 2013

Photoisomerization and photoinduced reactions in liquid CCl4 and CHCl3.

Fawzi Abou-Chahine; Thomas J. Preston; Greg T. Dunning; Andrew J. Orr-Ewing; Gregory M. Greetham; Ian P. Clark; Michael Towrie; Scott A. Reid

Transient absorption spectroscopy is used to follow the reactive intermediates involved in the first steps in the photochemistry initiated by ultraviolet (266-nm wavelength) excitation of solutions of 1,5-hexadiene, isoprene, and 2,3-dimethylbut-2-ene in carbon tetrachloride or chloroform. Ultraviolet and visible bands centered close to 330 and 500 nm in both solvents are assigned respectively to a charge transfer band of Cl-solvent complexes and the strong absorption band of a higher energy isomeric form of the solvent molecules (iso-CCl3-Cl or iso-CHCl2-Cl). These assignments are supported by calculations of electronic excitation energies. The isomeric forms have significant contributions to their structures from charge-separated resonance forms and offer a reinterpretation of previous assignments of the carriers of the visible bands that were based on pulsed radiolysis experiments. Kinetic analysis demonstrates that the isomeric forms are produced via the Cl-solvent complexes. Addition of the unsaturated hydrocarbons provides a reactive loss channel for the Cl-solvent complexes, and reaction radii and bimolecular rate coefficients are derived from analysis using a Smoluchowski theory model. For reactions of Cl with 1,5-hexadiene, isoprene, and 2,3-dimethylbut-2-ene in CCl4, rate coefficients at 294 K are, respectively, (8.6 ± 0.8) × 10(9), (9.5 ± 1.6) × 10(9), and (1.7 ± 0.1) × 10(10) M(-1) s(-1). The larger reaction radius and rate coefficient for 2,3-dimethylbut-2-ene are interpreted as evidence for an H-atom abstraction channel that competes effectively with the channel involving addition of a Cl-atom to a C═C bond. However, the addition mechanism appears to dominate the reactions of 1,5-hexadiene and isoprene. Two-photon excited CCl4 or CHCl3 can also ionize the diene or alkene solute.


Journal of Chemical Physics | 2011

Formation and relaxation dynamics of iso-CH2Cl–I in cryogenic matrices

Thomas J. Preston; Maitreya Dutta; Brian J. Esselman; Aimable Kalume; Lisa George; Robert J. McMahon; Scott A. Reid; F. Fleming Crim

Photolysis of chloroiodomethane (CH(2)ClI) in cryogenic matrices followed by recombination of the nascent radical pair produces an isomer (CH(2)Cl-I) that features a halogen-halogen (Cl-I) bond. Using ultrafast laser pulses, it is possible to follow the formation of this isomer by transient electronic absorption in low-temperature matrices of N(2), CH(4), and Ar. Frequency-domain measurements provide vibrational and electronic spectra, and electronic structure calculations give the structures of the isomers and the minimum energy path that connects them. The ultrafast experiments cleave the C-I bond with a 267-nm photolysis pulse and probe the formation of the isomer at wavelengths between 435 nm and 510 nm. The longest wavelengths preferentially interrogate vibrationally excited molecules, and their transient absorption shows that the highly vibrationally excited isomer appears within 1 to 2 ps, depending on the matrix, likely reflecting the loss of 2000 cm(-1) or more of energy in a strong, inelastic collision of the fragments with the matrix. The subsequent relaxation of the vibrationally excited isomer occurs in 20 to 40 ps, a time that is comparable to those observed for halomethane molecules and their isomers in liquids and in supercritical CO(2). These observations suggest that the formation and initial relaxation of the isomer in dense media do not depend strongly on the identity of the surroundings.


Journal of Physical Chemistry A | 2013

Probing the photoisomerization of CHBr3 and CHI3 in solution with transient vibrational and electronic spectroscopy.

Thomas J. Preston; Michael A. Shaloski; F. Fleming Crim

Transient infrared absorption spectroscopy monitors condensed-phase photodissociation dynamics of 30 mM CHBr3 and 50 mM CHI3 in liquid CCl4. The experiments have picosecond time resolution and monitor the C-H stretch region of both the parent polyhalomethanes and their photolytically generated isomers. The C-H stretching transitions of these isomers, in which the emergent halogen atom returns to form a C-X-X bonding motif, appear about 9 ps after photolysis for iso-CHBr2-Br and in about 46 ps for iso-CHI2-I. These time scales are consistent with, but differ from, the time evolution of the transient electronic absorption spectra of the same samples, highlighting the subtle differences between monitoring the vibrational and electronic chromophores. The specificity of using vibrational transitions to track condensed-phase reaction dynamics permits reassessment of the transient electronic spectrum of photolysis in neat CHBr3, which has an additional prompt feature near 400 nm. Calculations show that this feature, which arises from a precursor to the isomer, is a charge-transfer transition of a contact pair between the nascent Br fragment and a nearby CHBr3 molecule. Dilution and solvent studies show that transition is independent of the solvent. The iso-CHBr2-Br transition wavelength, however, shifts over the range of 400 to 510 nm depending on the solvent. Time-dependent density functional calculations faithfully reproduce these trends.


Journal of Physical Chemistry A | 2015

Empirical Valence Bond Theory Studies of the CH4 + Cl → CH3 + HCl Reaction.

Balázs Hornung; Jeremy N. Harvey; Thomas J. Preston; Greg T. Dunning; Andrew J. Orr-Ewing

We report a theoretical investigation of the CH4 + Cl hydrogen abstraction reaction in the framework of empirical valence bond (EVB) theory. The main purpose of this study is to benchmark the EVB method against previous experimental and theoretical work. Analytical potential energy surfaces for the reaction have been developed on which quasi-classical trajectory calculations were carried out. The surfaces agree well with ab initio calculations at stationary points along the reaction path and dynamically relevant regions outside the reaction path. The analysis of dynamical data obtained using the EVB method, such as vibrational, rotational, and angular distribution functions, shows that this method compares well to both experimental measurements and higher-level theoretical calculations, with the additional benefit of low computational cost.


Journal of Physical Chemistry A | 2015

Computational Study of Competition between Direct Abstraction and Addition-Elimination in the Reaction of Cl Atoms with Propene

Balázs Hornung; Thomas J. Preston; Shubhrangshu Pandit; Jeremy N. Harvey; Andrew J. Orr-Ewing

Quasi-classical trajectory calculations on a newly constructed and full-dimensionality potential energy surface (PES) examine the dynamics of the reaction of Cl atoms with propene. The PES is an empirical valence bond (EVB) fit to high-level ab initio energies and incorporates deep potential energy wells for the 1-chloropropyl and 2-chloropropyl radicals, a direct H atom abstraction route to HCl + allyl radical (CH2CHCH2(•)) products (Δ(r)H(298K)(⊖) = −63.1 kJ mol(-1)), and a pathway connecting these regions. In total, 94 000 successful reactive trajectories were used to compute distributions of angular scattering and HCl vibrational and rotational level populations. These measures of the reaction dynamics agree satisfactorily with available experimental data. The dominant reaction pathway is direct abstraction of a hydrogen atom from the methyl group of propene occurring in under 500 fs. Less than 10% of trajectories follow an addition–elimination route via the two isomeric chloropropyl radicals. Large amplitude motions of the Cl about the propene molecular framework couple the addition intermediates to the direct abstraction pathway. The EVB method provides a good description of the complicated PES for the Cl + propene reaction despite fitting to a limited number of ab initio points, with the further advantage that dynamics specific to certain mechanisms can be studied in isolation by switching off coupling terms in the EVB matrix connecting different regions of the PES.

Collaboration


Dive into the Thomas J. Preston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Fleming Crim

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maitreya Dutta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory M. Greetham

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ian P. Clark

Science and Technology Facilities Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge