Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Raub is active.

Publication


Featured researches published by Thomas J. Raub.


Molecular Pharmacology | 2006

The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice.

Ken Ichi Nezasa; Xianbin Tian; J. Cory Kalvass; Nita J. Patel; Thomas J. Raub; Kim L. R. Brouwer

The role of Mrp2, Bcrp, and P-glycoprotein in the biliary excretion of acetaminophen sulfate (AS) and glucuronide (AG), 4-methylumbelliferyl sulfate (4MUS) and glucuronide (4MUG), and harmol sulfate (HS) and glucuronide (HG) was studied in Abcc2(-/-), Abcg2(-/-), and Abcb1a(-/-)/Abcb1b(-/-) mouse livers perfused with the respective parent compounds using a cassette dosing approach. Biliary clearance of the sulfate conjugates was significantly decreased in Bcrp-deficient mouse livers, resulting in negligible biliary excretion of AS, 4MUS, and HS. It is noteworthy that the most profound decrease in the biliary clearance of the glucuronide conjugates was observed in Bcrp-deficient mouse livers, although the biliary clearance of 4MUG was also ∼35% lower in Mrp2-deficient mouse livers. As expected, biliary excretion of conjugates was not impaired in P-glycoprotein-deficient livers. An appreciable increase in perfusate recovery due to a shift in the directionality of metabolite excretion, from bile to perfusate, was noted in knockout mice only for conjugates whose biliary clearance constituted an appreciable (≥37%) fraction of total hepatic excretory clearance (i.e., 4MUS, HG, and HS). Biliary clearance of AG, AS, and 4MUG constituted a small fraction of total hepatic excretory clearance, so an appreciable increase in perfusate recovery of these metabolites was not observed in knockout mice despite markedly decreased biliary excretion. Unlike in rats, where sulfate and glucuronide conjugates were excreted into bile predominantly by Mrp2, mouse Bcrp mediated the biliary excretion of sulfate metabolites and also played a major role in the biliary excretion of the glucuronide metabolites, with some minor contribution from mouse Mrp2.


Drug Metabolism and Disposition | 2015

Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft

Thomas J. Raub; Graham N. Wishart; Palaniappan Kulanthaivel; Brian A. Staton; Rose T. Ajamie; Geri A. Sawada; Lawrence M. Gelbert; Harlan E. Shannon; Concepcion Sanchez-Martinez; Alfonso De Dios

Effective treatments for primary brain tumors and brain metastases represent a major unmet medical need. Targeting the CDK4/CDK6-cyclin D1-Rb-p16/ink4a pathway using a potent CDK4 and CDK6 kinase inhibitor has potential for treating primary central nervous system tumors such as glioblastoma and some peripheral tumors with high incidence of brain metastases. We compared central nervous system exposures of two orally bioavailable CDK4 and CDK6 inhibitors: abemaciclib, which is currently in advanced clinical development, and palbociclib (IBRANCE; Pfizer), which was recently approved by the U.S. Food and Drug Administration. Abemaciclib antitumor activity was assessed in subcutaneous and orthotopic glioma models alone and in combination with standard of care temozolomide (TMZ). Both inhibitors were substrates for xenobiotic efflux transporters P-glycoprotein and breast cancer resistant protein expressed at the blood–brain barrier. Brain Kp,uu values were less than 0.2 after an equimolar intravenous dose indicative of active efflux but were approximately 10-fold greater for abemaciclib than palbociclib. Kp,uu increased 2.8- and 21-fold, respectively, when similarly dosed in P-gp–deficient mice. Abemaciclib had brain area under the curve (0–24 hours) Kp,uu values of 0.03 in mice and 0.11 in rats after a 30 mg/kg p.o. dose. Orally dosed abemaciclib significantly increased survival in a rat orthotopic U87MG xenograft model compared with vehicle-treated animals, and efficacy coincided with a dose-dependent increase in unbound plasma and brain exposures in excess of the CDK4 and CDK6 Ki values. Abemaciclib increased survival time of intracranial U87MG tumor-bearing rats similar to TMZ, and the combination of abemaciclib and TMZ was additive or greater than additive. These data show that abemaciclib crosses the blood–brain barrier and confirm that both CDK4 and CDK6 inhibitors reach unbound brain levels in rodents that are expected to produce enzyme inhibition; however, abemaciclib brain levels are reached more efficiently at presumably lower doses than palbociclib and are potentially on target for a longer period of time.


Drug Metabolism and Disposition | 2006

Altered hepatobiliary disposition of 5 (and 6)-carboxy-2',7'-dichlorofluorescein in Abcg2 (Bcrp1) and Abcc2 (Mrp2) knockout mice

Ken Ichi Nezasa; Xianbin Tian; Nita J. Patel; Thomas J. Raub; Kim L. R. Brouwer

This study characterized the hepatobiliary disposition of 5 (and 6)-carboxy-2′,7′-dichlorofluorescein (CDF), a model Abcc2/Mrp2 (canalicular) and Abcc3/Mrp3 (basolateral) substrate, in perfused livers from male C57BL/6 wild-type, Abcg2–/–, and Abcc2–/– mice. After single-pass liver perfusion with 1 μM CDF diacetate for 30 min and an additional 30-min perfusion with CDF-free buffer, cumulative biliary excretion of CDF in Abcg2–/– mice was significantly higher than in wild-type mice (65 ± 6 and 47 ± 15% of dose, respectively, p < 0.05), whereas CDF recovery in bile of Abcc2–/– mice was negligible. Cumulative recovery of CDF in perfusate was significantly higher in Abcc2–/– (90 ± 8% of dose) relative to wild-type (35 ± 11% of dose) mice. Compartmental pharmacokinetic analysis revealed that the rate constant for CDF biliary excretion was significantly increased in Abcg2–/– (0.061 ± 0.005 min–1) compared with wild-type (0.039 ± 0.011 min–1) mice. The rate constant governing the basolateral excretion of CDF was ∼4-fold higher in Abcc2–/– (0.12 ± 0.02 min–1) relative to wild-type (0.030 ± 0.011 min–1) mice but was not altered in Abcg2–/– (0.031 ± 0.004 min–1) mice. Hepatic Abcc3 protein levels, determined by immunoblot analysis, were ∼60% higher in Abcc2–/– mice than in wild-type mice. In contrast, neither Abcc3 protein levels nor Abcc2 mRNA levels were altered in Abcg2–/– relative to wild-type mice. These data in knockout mouse models demonstrate that loss of expression and function of one canalicular transport protein may change the route and/or extent of excretion into bile or perfusate because of alterations in the function of other basolateral or canalicular transport proteins.


Bioorganic & Medicinal Chemistry Letters | 2012

How hydrogen bonds impact P-glycoprotein transport and permeability

Prashant V. Desai; Thomas J. Raub; Maria-Jesus Blanco

The requirement to cross a biological membrane can be a complex process especially if multidrug transporters such as P-gp must be considered. Drug partitioning into the lipid membrane and efflux by P-gp are tightly coupled processes wherein H-bonding interactions play a key role. All H-bond donors and acceptors are not equal in terms of the strength of the H-bonds that they form, hence it is important to consider their relative strength. Using various examples from literature, we illustrate the benefits of considering the relative strengths of individual H-bonds and introducing intramolecular H-bonds to increase membrane permeability and/or decrease P-gp efflux.


Drug Metabolism and Disposition | 2007

Multidrug resistance-associated protein 2 is primarily responsible for the biliary excretion of fexofenadine in mice.

Xianbin Tian; Jun Li; Arlene S. Bridges; Ken Ichi Nezasa; Nita J. Patel; Thomas J. Raub; Kim L. R. Brouwer

Previous studies implicated P-glycoprotein (P-gp) as the major transport protein responsible for the biliary excretion of fexofenadine (FEX). However, FEX biliary excretion was not impaired in P-gp- or breast cancer resistance protein (Bcrp)-knockout mice or multidrug resistance-associated protein 2 (Mrp2)-deficient rats. The present study tested the hypothesis that species differences exist in the transport protein primarily responsible for FEX biliary excretion between mice and rats. Livers from Mrp2-knockout (Mrp2KO) mice and Mrp2-deficient (TR-) rats were perfused in a single-pass manner with 0.5 μM FEX. N-(4-[2-(1,2,3,4-Tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) (10 μM) was employed to inhibit P-gp and Bcrp. The biliary excretion rate of FEX was decreased 85% in Mrp2KO relative to wild-type mice (18.4 ± 2.2 versus 122 ± 34 pmol/min/g liver). In mice, more than 50% of FEX unbound intrinsic biliary clearance (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{CL}_{\mathrm{bile},{\ }\mathrm{int}}^{{^\prime}}\) \end{document} = 3.0 ml/h/g liver) could be attributed to Mrp2 (Mrp2-dependent \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{CL}_{\mathrm{bile},{\ }\mathrm{int}}^{{^\prime}}\) \end{document} ∼ 1.7 ml/h/g liver), with P-gp and Bcrp playing a minor role (P-gp- and Bcrp-dependent \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{CL}_{\mathrm{bile},{\ }\mathrm{int}}^{{^\prime}}\) \end{document} ∼ 0.3 ml/h/g liver). Approximately one third of FEX \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{CL}_{\mathrm{bile},{\ }\mathrm{int}}^{{^\prime}}\) \end{document} was attributed to unidentified mechanisms in mice. In contrast to mice, FEX biliary excretion rate (245 ± 38 and 250 ± 25 pmol/min/g liver) and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{CL}_{\mathrm{bile},{\ }\mathrm{int}}^{{^\prime}}\) \end{document} (9.72 ± 2.47 and 6.49 ± 0.68 ml/h/g liver) were comparable between TR- and control Wistar rats, respectively, suggesting that unidentified transport mechanism(s) can completely compensate for the loss of Mrp2 function in rats. Mrp2 clearly plays a major role in FEX biliary excretion in mice. In conclusion, remarkable species differences exist in FEX hepatobiliary transport mechanisms.


Antimicrobial Agents and Chemotherapy | 2007

Roles of P-glycoprotein, Bcrp, and Mrp2 in biliary excretion of spiramycin in mice

Xianbin Tian; Jun Li; Arlene S. Bridges; Peijin Zhang; Nita J. Patel; Thomas J. Raub; Gary M. Pollack; Kim L. R. Brouwer

ABSTRACT The multidrug resistance proteins P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and multidrug resistance-associated protein 2 (Mrp2) are the three major canalicular transport proteins responsible for the biliary excretion of most drugs and metabolites. Previous in vitro studies demonstrated that P-gp transported macrolide antibiotics, including spiramycin, which is eliminated primarily by biliary excretion. Bcrp was proposed to be the primary pathway for spiramycin secretion into breast milk. In the present study, the contributions of P-gp, Bcrp, and Mrp2 to the biliary excretion of spiramycin were examined in single-pass perfused livers of male C57BL/6 wild-type, Bcrp-knockout, and Mrp2-knockout mice in the presence or absence of GF120918 (GW918), a P-gp and Bcrp inhibitor. Spiramycin was infused to achieve steady-state conditions, followed by a washout period, and parameters governing spiramycin hepatobiliary disposition were recovered by using pharmacokinetic modeling. In the absence of GW918, the rate constant governing spiramycin biliary excretion was decreased in Mrp2− knockout mice (0.0013 ± 0.0009 min−1) relative to wild-type mice (0.0124 ± 0.0096 min−1). These data are consistent with the ∼8-fold decrease in the recovery of spiramycin in the bile of Mrp2-knockout mice and suggest that Mrp2 is the major canalicular transport protein responsible for spiramycin biliary excretion. Interestingly, biliary recovery of spiramycin in Bcrp-knockout mice was increased in both the absence and presence of GW918 compared to wild-type mice. GW918 significantly decreased the rate constant for spiramycin biliary excretion and the rate constant for basolateral efflux of spiramycin. In conclusion, the biliary excretion of spiramycin in mice is mediated primarily by Mrp2 with a modest P-gp component.


Archive | 2006

Early Preclinical Evaluation of Brain Exposure in Support of Hit Identification and Lead Optimization

Thomas J. Raub; Barry S. Lutzke; Paula K. Andrus; Geri A. Sawada; Brian A. Staton

Assessing brain exposure continues to be a central theme for multiple therapeutic areas within the pharmaceutical industry. In addition to optimizing delivery to CNS targets, brain exposure is considered for unwanted CNS access for either on-target activity or for off-target CNS toxicity or adverse events. The biopharmaceutical scientist is challenged to arrive at a rational strategy that is functional within the constraints of limited resources. Common strategies are integrated combinations of in silico, in vitro, and in vivo methods (Caldwell et al., 2001). The appropriate strategy used depends upon the need, i.e., to drive chemistry or to establish a pharmacokinetic-pharmacodynamic relationship. We believe that a rigorous strategy is best so that the best lead series are selected. The intent is to anticipate liabilities of a lead series such that subsequent lead optimization cycle time and clinical attrition rates are ultimately reduced. The rigorous methods should deliver value by aiding synthetic chemistry direction while filtering out difficult templates. We also advocate the use of animal models as early as possible to establish a realistic perspective around the plethora of higher-throughput screening assay data. This application obviously challenges one to increase the capacity of these in vivo assays without compromising data quality or wasting vital and limited people resources.


Molecular Cancer Therapeutics | 2011

Abstract B234: LY2835219, a potent oral inhibitor of the cyclin-dependent kinases 4 and 6 (CDK4/6) that crosses the blood-brain barrier and demonstrates in vivo activity against intracranial human brain tumor xenografts.

Concepcion Sanchez-Martinez; Lawrence M. Gelbert; Harlan E. Shannon; Alfonso De Dios; Brian A. Staton; Rose T. Ajamie; Geri A. Sawada; Graham N. Wishart; Thomas J. Raub

Effective treatments for primary brain tumors and brain metastases represent a major unmet medical need. The blood-brain barrier (BBB) arises from both a structural barrier and drug efflux transporters that prevent most anti-cancer drugs from efficiently reaching brain tumors or metastases. The CDK4/6 pathway (CDK4/6-cyclin D1-Rb-CDKN2) plays a key role in regulating cellular proliferation. The importance of this pathway is highlighted by its inactivation in a majority of human tumors including glioblastoma multiforme. We have identified and characterized a potent and selective dual cdk4/6 inhibitor, LY2835219. Preclinical characterization was performed with the monomesylate salt (LY2835219-MsOH), which inhibits these kinases with IC50 values of 2 and 10 nM for CDK4 and CDK6, respectively. LY2835219-MsOH is a potent inhibitor of Rb phosphorylation in vitro and in vivo that induces G1 specific arrest and inhibition of tumor growth. To determine the potential of LY2835219-MsOH for the treatment of brain tumors and metastases, we assessed the ability of LY2835219-MsOH to cross the BBB and its interaction with the P-gp and BCRP efflux pumps that are expressed at the BBB. Using MDCK cells over-expressing either human ABCB1 (P-gp) or mouse abcg2 (Bcrp), LY2835219-MsOH and a second CDK4/6 inhibitor (PD0332991) are substrates for these two pumps, but each cross the murine BBB in vivo to a different degree. Unlike PD0332991, LY2835219-MsOH saturates BBB efflux with an unbound plasma IC50 of ∼95 nM (1.8 uM total plasma). The percent of dose in brain for LY2835219-MsOH is 0.5–3.9% and is comparable to that for temozolomide (1.9% plasma). In both a subcutaneous and intracranial human glioblastoma model (U87MG), LY2835219-MsOH suppressed tumor growth in a dose-dependent manner both as a single agent, and in combination with temozolomide. In summary, LY2835219-MsOH is a potent and selective oral CDK4/6 inhibitor that crosses the BBB and inhibits the growth of intracranial tumors alone or in combination with other agents. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2011 Nov 12-16; San Francisco, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2011;10(11 Suppl):Abstract nr B234.


Drug Metabolism and Disposition | 2009

Sex-dependent Disposition of Acetaminophen Sulfate and Glucuronide in the In Situ Perfused Mouse Liver

Jin Kyung Lee; Koji Abe; Arlene S. Bridges; Nita J. Patel; Thomas J. Raub; Gary M. Pollack; Kim L. R. Brouwer

Breast cancer resistance protein (BCRP, ABCG2) is expressed in the hepatic canalicular membrane and mediates biliary excretion of xenobiotics including sulfate and glucuronide metabolites of some compounds. Hepatic Bcrp expression is sex-dependent, with higher expression in male mice. The hypothesis that sex-dependent Bcrp expression influences the hepatobiliary disposition of phase II metabolites was tested in the present study using acetaminophen (APAP) and the generated APAP glucuronide (AG) and sulfate (AS) metabolites in single-pass in situ perfused livers from male and female wild-type and Abcg–/– (Bcrp-deficient) mice. Pharmacokinetic modeling was used to estimate parameters governing the hepatobiliary disposition of APAP, AG, and AS. In wild-type mice, the biliary excretion rate constant was 2.5- and 7-fold higher in males than in females for AS and AG, respectively, reflecting male-predominant Bcrp expression. Sex-dependent differences in AG biliary excretion were not observed in Bcrp-deficient mice, and AS biliary excretion was negligible. Interestingly, sex-dependent basolateral excretion of AG (higher in males) and AS (higher in females) was noted in wild-type mice with a similar trend in Bcrp-deficient mouse livers, reflecting an increased rate constant for AG formation in male and AS formation in female mouse livers. In addition, the rate constant for AS basolateral excretion was increased significantly in female mouse livers compared with that in male mouse livers. It is interesting to note that multidrug resistance-associated protein 4 was higher in female than in male mouse livers. In conclusion, sex-dependent differences in conjugation and transporter expression result in profound differences in the hepatobiliary disposition of AG and AS in male and female mouse livers.


Bioorganic & Medicinal Chemistry | 2008

Chalcogenopyrylium dyes as inhibitors/modulators of P-glycoprotein in multidrug-resistant cells

Geri A. Sawada; Thomas J. Raub; J. William Higgins; Nancy K. Brennan; Teiah M. Moore; Gregory Tombline; Michael R. Detty

A series of chalcogenopyrylium dyes were evaluated as modulators/inhibitors of P-glycoprotein (Pgp). Their ability to inhibit verapamil (VER)-dependent ATPase activity (IC(50) values) in lipid-activated, mouse Cys-less mdr3 Pgp was determined. Their ability to promote calcein-AM (CAM) uptake in MDCKII-MDR1 cells and their capacity to be transported by Pgp in monolayers of MDCKII-MDR1 cells were also evaluated. The chalcogenopyrylium dyes promoted CAM uptake with values of EC(50) between 5 x 10(-6) and 3.5 x 10(-5)M and 7 of the 9 dyes examined in transport studies were substrates for Pgp with efflux ratios (P(BA/AB)) between 14 and 390. Binding of three compounds (1-S, 3-S, and 4-S) to Pgp was also assessed by fluorescence. These three thiopyrylium dyes showed increased fluorescence upon binding to Pgp, giving apparent binding constants, K(app), on the order of 10(-7) to 10(-6)M. Compound 8-Te was particularly intriguing since it appeared to influence Pgp at low micromolar concentrations as evidenced by its influence on VER-stimulated ATPase activity (IC(50) of 1.2 x 10(-6)M), CAM uptake (EC(50) of 5.4 x 10(-6)M), as well as [(3)H]-vinblastine transport by Pgp in cells (IC(50) of 4.3 x 10(-6)M) and within inside-out membrane vesicles (IC(50) of 9.6 x 10(-6)M). Yet, Pgp did not influence the distribution of 8-Te in MDCKII-MDR1 monolayers suggesting that 8-Te may bind to an allosteric site.

Collaboration


Dive into the Thomas J. Raub's collaboration.

Top Co-Authors

Avatar

Kim L. R. Brouwer

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xianbin Tian

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Arlene S. Bridges

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ken Ichi Nezasa

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary M. Pollack

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge