Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Reilly is active.

Publication


Featured researches published by Thomas J. Reilly.


Journal of Bacteriology | 2003

Initial Proteome Analysis of Model Microorganism Haemophilus influenzae Strain Rd KW20

Eugene Kolker; Samuel O. Purvine; Michael Y. Galperin; Serg Stolyar; David R. Goodlett; Alexey I. Nesvizhskii; Andrew Keller; Tao Xie; Jimmy K. Eng; Eugene C. Yi; Leroy Hood; Alex F. Picone; Tim Cherny; Brian Tjaden; Andrew F. Siegel; Thomas J. Reilly; Kira S. Makarova; Bernhard O. Palsson; Arnold L. Smith

The proteome of Haemophilus influenzae strain Rd KW20 was analyzed by liquid chromatography (LC) coupled with ion trap tandem mass spectrometry (MS/MS). This approach does not require a gel electrophoresis step and provides a rapidly developed snapshot of the proteome. In order to gain insight into the central metabolism of H. influenzae, cells were grown microaerobically and anaerobically in a rich medium and soluble and membrane proteins of strain Rd KW20 were proteolyzed with trypsin and directly examined by LC-MS/MS. Several different experimental and computational approaches were utilized to optimize the proteome coverage and to ensure statistically valid protein identification. Approximately 25% of all predicted proteins (open reading frames) of H. influenzae strain Rd KW20 were identified with high confidence, as their component peptides were unambiguously assigned to tandem mass spectra. Approximately 80% of the predicted ribosomal proteins were identified with high confidence, compared to the 33% of the predicted ribosomal proteins detected by previous two-dimensional gel electrophoresis studies. The results obtained in this study are generally consistent with those obtained from computational genome analysis, two-dimensional gel electrophoresis, and whole-genome transposon mutagenesis studies. At least 15 genes originally annotated as conserved hypothetical were found to encode expressed proteins. Two more proteins, previously annotated as predicted coding regions, were detected with high confidence; these proteins also have close homologs in related bacteria. The direct proteomics approach to studying protein expression in vivo reported here is a powerful method that is applicable to proteome analysis of any (micro)organism.


Infection and Immunity | 2008

Combined Deletion of Four Francisella novicida Acid Phosphatases Attenuates Virulence and Macrophage Vacuolar Escape

Nrusingh P. Mohapatra; Shilpa Soni; Thomas J. Reilly; Jirong Liu; Karl E. Klose; John S. Gunn

ABSTRACT Francisella tularensis is a facultative intracellular pathogen and the etiologic agent of tularemia. It is capable of escape from macrophage phagosomes and replicates in the host cell cytosol. Bacterial acid phosphatases are thought to play a major role in the virulence and intracellular survival of a number of intracellular pathogens. The goal of this study was to delete the four primary acid phosphatases (Acps) from Francisella novicida and examine the interactions of mutant strains with macrophages, as well as the virulence of these strains in mice. We constructed F. novicida mutants with various combinations of acp deletions and showed that loss of the four Acps (AcpA, AcpB, AcpC, and histidine acid phosphatase [Hap]) in an F. novicida strain (ΔABCH) resulted in a 90% reduction in acid phosphatase activity. The ΔABCH mutant was defective for survival/growth within human and murine macrophage cell lines and was unable to escape from phagosome vacuoles. With accumulation of Acp deletions, a progressive loss of virulence in the mouse model was observed. The ΔABCH strain was dramatically attenuated and was an effective single-dose vaccine against homologous challenge. Furthermore, both acpA and hap were induced when the bacteria were within host macrophages. Thus, the Francisella acid phosphatases cumulatively play an important role in intracellular trafficking and virulence.


Journal of Biological Chemistry | 2006

Structure of Francisella tularensis AcpA PROTOTYPE OF A UNIQUE SUPERFAMILY OF ACID PHOSPHATASES AND PHOSPHOLIPASES C

Richard L. Felts; Thomas J. Reilly; John J. Tanner

AcpA is a respiratory burst-inhibiting acid phosphatase from the Centers for Disease Control and Prevention Category A bioterrorism agent Francisella tularensis and prototype of a superfamily of acid phosphatases and phospholipases C. We report the 1.75-Å resolution crystal structure of AcpA complexed with the inhibitor orthovanadate, which is the first structure of any F. tularensis protein and the first for any member of this superfamily. The core domain is a twisted 8-stranded β-sheet flanked by three α-helices on either side, with the active site located above the carboxyl-terminal edge of the β-sheet. This architecture is unique among acid phosphatases and resembles that of alkaline phosphatase. Unexpectedly, the active site features a serine nucleophile and metal ion with octahedral coordination. Structure-based sequence analysis of the AcpA superfamily predicts that the hydroxyl nucleophile and metal center are also present in AcpA-like phospholipases C. These results imply a phospholipase C catalytic mechanism that is radically different from that of zinc metallophospholipases.


Omics A Journal of Integrative Biology | 2004

In Silico Metabolic Model and Protein Expression of Haemophilus influenzae Strain Rd KW20 in Rich Medium

Anu Raghunathan; Nathan D. Price; Michael Y. Galperin; Kira S. Makarova; Samuel O. Purvine; Alex F. Picone; Tim Cherny; Tao Xie; Thomas J. Reilly; Robert S. Munson; Ryan E. Tyler; Brian J. Akerley; Arnold L. Smith; Bernhard O. Palsson; Eugene Kolker

The intermediary metabolism of Haemophilus influenzae strain Rd KW20 was studied by a combination of protein expression analysis using a recently developed direct proteomics approach, mutational analysis, and mathematical modeling. Special emphasis was placed on carbon utilization, sugar fermentation, TCA cycle, and electron transport of H. influenzae cells grown microaerobically and anaerobically in a rich medium. The data indicate that several H. influenzae metabolic proteins similar to Escherichia coli proteins, known to be regulated by low concentrations of oxygen, were well expressed in both growth conditions in H. influenzae. An in silico model of the H. influenzae metabolic network was used to study the effects of selective deletion of certain enzymatic steps. This allowed us to define proteins predicted to be essential or non-essential for cell growth and to address numerous unresolved questions about intermediary metabolism of H. influenzae. Comparison of data from in vivo protein expression with the protein list associated with a genome-scale metabolic model showed significant coverage of the known metabolic proteome. This study demonstrates the significance of an integrated approach to the characterization of H. influenzae metabolism.


Journal of the American Chemical Society | 2011

The biological buffer bicarbonate/CO2 potentiates H2O2-mediated inactivation of protein tyrosine phosphatases.

Haiying Zhou; Harkewal Singh; Zachary D. Parsons; Sarah M. Lewis; Sanjib Bhattacharya; Derrick R. Seiner; Jason N. LaButti; Thomas J. Reilly; John J. Tanner; Kent S. Gates

Hydrogen peroxide is a cell signaling agent that inactivates protein tyrosine phosphatases (PTPs) via oxidation of their catalytic cysteine residue. PTPs are inactivated rapidly during H(2)O(2)-mediated cellular signal transduction processes, but, paradoxically, hydrogen peroxide is a rather sluggish PTP inactivator in vitro. Here we present evidence that the biological buffer bicarbonate/CO(2) potentiates the ability of H(2)O(2) to inactivate PTPs. The results of biochemical experiments and high-resolution crystallographic analysis are consistent with a mechanism involving oxidation of the catalytic cysteine residue by peroxymonocarbonate generated via the reaction of H(2)O(2) with HCO(3)(-)/CO(2).


FEBS Letters | 2001

Contribution of the DDDD motif of H. influenzae e (P4) to phosphomonoesterase activity and heme transport.

Thomas J. Reilly; Bruce A. Green; Gary W. Zlotnick; Arnold L. Smith

Haemophilus influenzae lipoprotein e (P4) is a member of the DDDD phosphohydrolase superfamily and mediates heme transport. Each of the aspartate residues of the signature motif is required for phosphomonoesterase activity, as none of the e (P4) single D mutants (D64A, D66A, D181N, and D185A) possessed detectable phosphomonoesterase activity. These results suggest that the signature motif is essential to the phosphomonoesterase activity of lipoprotein e (P4). When assessed for phosphomonoesterase‐dependent heme transport activity in Escherichia coli hemA strains, plasmids containing D181N and D185A retained heme transport as indicated by aerobic growth while D64A and D66A did not. We conclude that phosphomonoesterase activity is not required for heme transport.


Journal of Bacteriology | 2008

Moraxella catarrhalis Synthesizes an Autotransporter That Is an Acid Phosphatase

Todd C. Hoopman; Wei Wang; Chad A. Brautigam; Jennifer L. Sedillo; Thomas J. Reilly; Eric J. Hansen

Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10(-10)) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation domain of conventional autotransporters. Cloning and expression of the M. catarrhalis mapA gene in Escherichia coli confirmed the presence of acid phosphatase activity in the MapA protein. The MapA protein was shown to be localized to the outer membrane of M. catarrhalis and was not detected either in the soluble cytoplasmic fraction from disrupted M. catarrhalis cells or in the spent culture supernatant fluid from M. catarrhalis. Use of the predicted MapA translocation domain in a fusion construct with the passenger domain from another predicted M. catarrhalis autotransporter confirmed the translocation ability of this MapA domain. Inactivation of the mapA gene in M. catarrhalis strain O35E reduced the acid phosphatase activity expressed by this organism, and this mutation could be complemented in trans with the wild-type mapA gene. Nucleotide sequence analysis of the mapA gene from six M. catarrhalis strains showed that this protein was highly conserved among strains of this pathogen. Site-directed mutagenesis of a critical histidine residue (H233A) in the predicted active site of the acid phosphatase domain in MapA eliminated acid phosphatase activity in the recombinant MapA protein. This is the first description of an autotransporter protein that expresses acid phosphatase activity.


Infection and Immunity | 2005

Certain Site-Directed, Nonenzymatically Active Mutants of the Haemophilus influenzae P4 Lipoprotein Are Able To Elicit Bactericidal Antibodies

Bruce A. Green; Elizabeth Baranyi; Thomas J. Reilly; Arnold L. Smith; Gary W. Zlotnick

ABSTRACT The Haemophilus influenzae P4 lipoprotein (hel) is a potential component of a nontypeable H. influenzae otitis media vaccine. Since P4 is known to be an enzyme, nonenzymatically active forms of recombinant P4 are required. After site-directed mutagenesis of the hel gene, three of the mutated proteins were shown to be vaccine candidates.


Applied and Environmental Microbiology | 2009

Characterization of a Unique Class C Acid Phosphatase from Clostridium perfringens

Thomas J. Reilly; Deborah L. Chance; Michael J. Calcutt; John J. Tanner; Richard L. Felts; Stephen C. Waller; Michael T. Henzl; Thomas P. Mawhinney; Irene K. Ganjam; William H. Fales

ABSTRACT Clostridium perfringens is a gram-positive anaerobe and a pathogen of medical importance. The detection of acid phosphatase activity is a powerful diagnostic indicator of the presence of C. perfringens among anaerobic isolates; however, characterization of the enzyme has not previously been reported. Provided here are details of the characterization of a soluble recombinant form of this cell-associated enzyme. The denatured enzyme was ∼31 kDa and a homodimer in solution. It catalyzed the hydrolysis of several substrates, including para-nitrophenyl phosphate, 4-methylumbelliferyl phosphate, and 3′ and 5′ nucleoside monophosphates at pH 6. Calculated Kms ranged from 0.2 to 0.6 mM with maximum velocity ranging from 0.8 to 1.6 μmol of Pi/s/mg. Activity was enhanced in the presence of some divalent cations but diminished in the presence of others. Wild-type enzyme was detected in all clinical C. perfringens isolates tested and found to be cell associated. The described enzyme belongs to nonspecific acid phosphatase class C but is devoid of lipid modification commonly attributed to this class.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2006

Cloning, purification and crystallization of Bacillus anthracis class C acid phosphatase

Richard L. Felts; Thomas J. Reilly; Michael J. Calcutt; John J. Tanner

Cloning, expression, purification and crystallization studies of a recombinant class C acid phosphatase from the Category A pathogen Bacillus anthracis are reported. Large diffraction-quality crystals were grown in the presence of HEPES and Jeffamine ED-2001 at pH 7.0. The crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 53.4, b = 90.1, c = 104.2 angstroms. The asymmetric unit is predicted to contain two protein molecules with a solvent content of 38%. Two native data sets were collected from the same crystal before and after flash-annealing. The first data set had a mosaicity of 1.6 degrees and a high-resolution limit of 1.8 angstroms. After flash-annealing, the apparent mosaicity decreased to 0.9 degrees and the high-resolution limit of usable data increased to 1.6 angstroms. This crystal form is currently being used to determine the structure of B. anthracis class C acid phosphatase with experimental phasing techniques.

Collaboration


Dive into the Thomas J. Reilly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge