Thomas J. Roberts
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas J. Roberts.
Cell | 1993
Songyang Zhou; Steven E. Shoelson; Manas Chaudhuri; Gerald Gish; Tony Pawson; Wayne G. Haser; Fred King; Thomas J. Roberts; Sheldon Ratnofsky; R J Lechleider; Benjamin G. Neel; Raymond B. Birge; J. Eduardo Fajardo; Margaret M. Chou; Hidesaburo Hanafusa; Brian Schaffhausen; Lewis C. Cantley
A phosphopeptide library was used to determine the sequence specificity of the peptide-binding sites of SH2 domains. One group of SH2 domains (Src, Fyn, Lck, Fgr, Abl, Crk, and Nck) preferred sequences with the general motif pTyr-hydrophilic-hydrophilic-Ile/Pro while another group (SH2 domains of p85, phospholipase C-gamma, and SHPTP2) selected the general motif pTyr-hydrophobic-X-hydrophobic. Individual members of these groups selected unique sequences, except the Src subfamily (Src, Fyn, Lck, and Fgr), which all selected the sequence pTyr-Glu-Glu-Ile. The variability in SH2 domain sequences at likely sites of contact provides a structural basis for the phosphopeptide selectivity of these families. Possible in vivo binding sites of the SH2 domains are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Jing Chen; Katsunori Fujii; Lixin Zhang; Thomas J. Roberts; Haian Fu
The Ser/Thr kinase Raf-1 is a protooncogene product that is a central component in many signaling pathways involved in normal cell growth and oncogenic transformation. Upon activation, Raf-1 phosphorylates mitogen-activated protein kinase kinase (MEK), which in turn activates mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERKs), leading to the propagation of signals. Depending on specific stimuli and cellular environment, the Raf-1–MEK–ERK cascade regulates diverse cellular processes such as proliferation, differentiation, and apoptosis. Here, we describe a MEK–ERK-independent prosurvival function of Raf-1. We found that Raf-1 interacts with the proapoptotic, stress-activated protein kinase ASK1 (apoptosis signal-regulating kinase 1) in vitro and in vivo. Deletion analysis localized the Raf-1 binding site to the N-terminal regulatory fragment of ASK1. This interaction allows Raf-1 to act independently of the MEK–ERK pathway to inhibit apoptosis. Furthermore, catalytically inactive forms of Raf-1 can mimic the wild-type effect, raising the possibility of a kinase-independent function of Raf-1. Thus, Raf-1 may promote cell survival through its protein–protein interactions in addition to its established MEK kinase function.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2002
Thomas J. Roberts
The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body.
The Journal of Experimental Biology | 2011
Thomas J. Roberts; Emanuel Azizi
Summary The muscles that power vertebrate locomotion are associated with springy tissues, both within muscle and in connective tissue elements such as tendons. These springs share in common the same simple action: they stretch and store elastic strain energy when force is applied to them and recoil to release energy when force decays. Although this elastic action is simple, it serves a diverse set of functions, including metabolic energy conservation, amplification of muscle power output, attenuation of muscle power input, and rapid mechanical feedback that may aid in stability. In recent years, our understanding of the mechanisms and importance of biological springs in locomotion has advanced significantly, and it has been demonstrated that elastic mechanisms are essential for the effective function of the muscle motors that power movement. Here, we review some recent advances in our understanding of elastic mechanisms, with an emphasis on two proposed organizing principles. First, we review the evidence that the various functions of biological springs allow the locomotor system to operate beyond the bounds of intrinsic muscle properties, including metabolic and mechanical characteristics, as well as motor control processes. Second, we propose that an energy-based framework is useful for interpreting the diverse functions of series-elastic springs. In this framework, the direction and timing of the flow of energy between the body, the elastic element and the contracting muscle determine the function served by the elastic mechanism (e.g. energy conservation vs power amplification). We also review recent work demonstrating that structures such as tendons remodel more actively and behave more dynamically than previously assumed.
The Journal of Experimental Biology | 2003
Thomas J. Roberts; Richard L. Marsh
SUMMARY The function of many muscles during natural movements is to accelerate a mass. We used a simple model containing the essential elements of this functional system to investigate which musculoskeletal features are important for increasing the mechanical work done in a muscle-powered acceleration. The muscle model consisted of a muscle-like actuator with frog hindlimb muscle properties, operating across a lever to accelerate a load. We tested this model in configurations with and without a series elastic element and with and without a variable mechanical advantage. When total muscle shortening was held constant at 30%, the model produced the most work when the muscle operated with a series elastic element and an effective mechanical advantage that increased throughout the contraction (31 J kg-1 muscle vs 26.6 J kg-1 muscle for the non-compliant, constant mechanical advantage configuration). We also compared the model output with the dynamics of jumping bullfrogs, measured by high-speed video analysis, and the length changes of the plantaris muscle, measured by sonomicrometry. This comparison revealed that the length, force and power trajectory of the body of jumping frogs could be accurately replicated by a model of a fully active muscle operating against an inertial load, but only if the model muscle included a series elastic element. Sonomicrometer measurements of the plantaris muscle revealed an unusual, biphasic pattern of shortening, with high muscle velocities early and late in the contraction, separated by a period of slow contraction. The model muscle produced this pattern of shortening only when an elastic element was included. These results demonstrate that an elastic element can increase the work output in a muscle-powered acceleration. Elastic elements uncouple muscle fiber shortening velocity from body movement to allow the muscle fibers to operate at slower shortening velocities and higher force outputs. A variable muscle mechanical advantage improves the effectiveness of elastic energy storage and recovery by providing an inertial catch mechanism. These results can explain the high power outputs observed in jumping frogs. More generally, our model suggests how the function of non-muscular elements of the musculoskeletal system enhances performance in muscle-powered accelerations.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Emanuel Azizi; Elizabeth L. Brainerd; Thomas J. Roberts
Muscle fiber architecture, i.e., the physical arrangement of fibers within a muscle, is an important determinant of a muscles mechanical function. In pennate muscles, fibers are oriented at an angle to the muscles line of action and rotate as they shorten, becoming more oblique such that the fraction of force directed along the muscles line of action decreases throughout a contraction. Fiber rotation decreases a muscles output force but increases output velocity by allowing the muscle to function at a higher gear ratio (muscle velocity/fiber velocity). The magnitude of fiber rotation, and therefore gear ratio, depends on how the muscle changes shape in the dimensions orthogonal to the muscles line of action. Here, we show that gear ratio is not fixed for a given muscle but decreases significantly with the force of contraction (P < 0.0001). We find that dynamic muscle-shape changes promote fiber rotation at low forces and resist fiber rotation at high forces. As a result, gearing varies automatically with the load, to favor velocity output during low-load contractions and force output for contractions against high loads. Therefore, muscle-shape changes act as an automatic transmission system allowing a pennate muscle to shift from a high gear during rapid contractions to low gear during forceful contractions. These results suggest that variable gearing in pennate muscles provides a mechanism to modulate muscle performance during mechanically diverse functions.
The Journal of Experimental Biology | 2004
Annette M. Gabaldón; Frank E. Nelson; Thomas J. Roberts
SUMMARY We investigated the mechanical function of two ankle extensor muscles, the lateral gastrocnemius (LG) and peroneus longus (PL), in wild turkeys Meleagris gallopavo during steady speed running. We hypothesized that mechanical work output of the LG and PL during running parallels the demand for mechanical work on the body. The turkeys ran on level, inclined (+6°, +12°) and declined (–6°, –12°) treadmills to change the demand for mechanical work. Simultaneous measurements of muscle length (from sonomicrometry) and muscle force (from tendon strain gauges) were used to calculate mechanical work output. During level running at a speed of 2 m s–1, the LG and PL were both active in stance but produced peak force at different times, at approximately 21% of stance duration for the LG and 70% for the PL. The LG and PL also had different length patterns in stance during level running. The LG underwent little shortening during force production, resulting in negligible net positive work (2.0±0.8 J kg–1). By contrast, the PL produced force across a stretch–shorten cycle in stance and did significant net positive work (4.7±1.6 J kg–1). Work outputs for both the LG and PL were directly proportional to running slope. When we increased the demand for net positive work by running the turkeys on an incline, the LG and PL increased stance net positive work output in direct proportion to slope (P<0.05). Stance net positive work output increased to 7.0±1.3 J kg–1 for the LG and 8.1±2.9 J kg–1 for the PL on the steepest incline. Increases in stance net positive work for the LG and PL were associated with increases in net shortening strain and average shortening velocity, but average force in stance remained constant. The LG and PL muscles were also effective energy absorbers during decline running, when there is demand for net negative work on the body. During decline running at 2 m s–1 on the steepest slope, the LG absorbed 4.6±2.2 J kg–1 of net work in stance and the PL absorbed 2.4±0.9 J kg–1 of net work. Shifts in muscle mechanical function from energy production during incline running to energy absorption during decline running were observed over a range of running speeds from 1–3 m s–1 for both the LG and PL. Two fundamentally different mechanisms for changing work output were apparent in the mechanical behavior of the LG and PL. The LG simply altered its length pattern; it actively shortened during incline running to produce mechanical energy and actively lengthened during decline running to absorb mechanical energy. The PL changed mechanical function by altering its length pattern and by shifting the timing of force production across its stretch–shorten cycle. During incline running, the PL produced force during late stance shortening for positive work, but during decline running, the timing of force production shifted into early stance, to align with lengthening for negative work. In addition, during decline running, the PL greatly reduced or eliminated late stance shortening, thus reducing the potential for positive work. Our results show that the changing demands for whole body work during steady speed running are met, at least in part, by an ability of single muscles to shift mechanical function from net energy production to net energy absorption.
Cell | 1991
Ping Li; Kenneth Wood; Harvey J. Mamon; Wayne G. Haser; Thomas J. Roberts
Recent studies of the molecular mechanisms of signal transduction have highlighted four molecules as potential secondary signal transducers for receptor tyrosine kinases. These are phospholipase C-γ, GTPase activating protein, type I phosphoinositide kinase and Raf-1. Recent work on the daf-1 gene of Caenorhabditis elegans raises the possibility that, in at least some cases, extracellular signals can activate Raf-1 family members directly. In this minireview we will discuss what is not known concerning Raf-1 and related molecules, why the unknowns are important to our understanding of signal transduction, and how genetic studies in invertebrates may provide new meanings to investigate these issues.
The Journal of Experimental Biology | 2005
Thomas J. Roberts; Richard A. Belliveau
SUMMARY During uphill running limb muscles must perform net mechanical work to increase the bodys potential energy, while during level running the net mechanical work required is negligible as long as speed is constant. The increased demands for work as running incline increases might be met by an increase in power output at all joints, or only a subset of joints. We used inverse dynamics to determine which joints modulate net work output in humans running uphill. We measured joint kinematics and ground reaction force during moderate speed running at 0°, 6° and 12° inclines. Muscle force, joint power and work per step were determined at the ankle, knee and hip using inverse dynamics calculations. We found that virtually all of the increase in work output with increasing incline resulted from increases in net work done at the hip (-0.25±0.23 J kg-1, level, vs 0.88±0.10 J kg-1, 12° incline), while the knee and ankle performed similar functions at all inclines. The increase in work output at the hip resulted primarily from a large increase in average net muscle moment during stance (2.07±17.84 Nm, level, vs 87.30±13.89 Nm, 12° incline); joint excursion increased by only 20% (41.22±3.41°, level, vs 49.22±2.35°, 12° incline). The increase in hip muscle moment and power was associated with a poorer mechanical advantage for producing force against the ground. The increase in hip moment with running incline allows for the production of the power necessary to lift the body. This power may be developed by hip extensors or by transfer of power from muscles at other joints via biarticular muscles.
Biology Letters | 2012
Henry C. Astley; Thomas J. Roberts
Anuran jumping is one of the most powerful accelerations in vertebrate locomotion. Several species are hypothesized to use a catapult-like mechanism to store and rapidly release elastic energy, producing power outputs far beyond the capability of muscle. Most evidence for this mechanism comes from measurements of whole-body power output; the decoupling of joint motion and muscle shortening expected in a catapult-like mechanism has not been demonstrated. We used high-speed marker-based biplanar X-ray cinefluoroscopy to quantify plantaris muscle fascicle strain and ankle joint motion in frogs in order to test for two hallmarks of a catapult mechanism: (i) shortening of fascicles prior to joint movement (during tendon stretch), and (ii) rapid joint movement during the jump without rapid muscle-shortening (during tendon recoil). During all jumps, muscle fascicles shortened by an average of 7.8 per cent (54% of total strain) prior to joint movement, stretching the tendon. The subsequent period of initial joint movement and high joint angular acceleration occurred with minimal muscle fascicle length change, consistent with the recoil of the elastic tendon. These data support the plantaris longus tendon as a site of elastic energy storage during frog jumping, and demonstrate that catapult mechanisms may be employed even in sub-maximal jumps.